www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollsändige Induktion rekursiv
Vollsändige Induktion rekursiv < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollsändige Induktion rekursiv: Tipp
Status: (Frage) überfällig Status 
Datum: 13:19 Do 18.01.2007
Autor: Trapt_ka

Aufgabe
[mm] a_{o}=2 [/mm]
und
[mm] a_{n+1}=1/5*(a_{n}^2+4) [/mm]

nun soll ich mittels vollständiger induktion beweisen das [mm] a_{n+1} und irgend wie bekomme ich das nicht merh hin
wäre froh wenn mir einer helfen könnte
mfg

        
Bezug
Vollsändige Induktion rekursiv: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Do 18.01.2007
Autor: banachella

Hallo!

Versuch doch mal folgendes:

[mm] $a_{n+1}=\bruch15 (a_n^2+4)=\left( \bruch {a_n}{\sqrt 5}\right)^2+\bruch [/mm] 45$.
Jetzt musst du nur noch zeigen, dass aus [mm] $a_{n} Kommst du jetzt auf den Induktionsschritt?

Gruß, banachella

Bezug
        
Bezug
Vollsändige Induktion rekursiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 Mo 22.01.2007
Autor: Trapt_ka

leider soll ich dies allgemein beweise also ohne [mm] a_{0}=2 [/mm]

Bezug
                
Bezug
Vollsändige Induktion rekursiv: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Di 23.01.2007
Autor: leduart

Hallo
ohne [mm] a_0=2 [/mm] kann die Behauptung nicht allgemein stimmen.
Bsp.: [mm] a_0=1 [/mm] folgt [mm] a_n=1 [/mm] fuer alle n.
[mm] a_0=0 a1>a_0 [/mm]
Also musst du den Anfang mit reinstecken!
gruss leduart

Bezug
                        
Bezug
Vollsändige Induktion rekursiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 Di 23.01.2007
Autor: Trapt_ka

ok das sit klar aber wie siehst die vollständige induktion aus
ich bekomme sie einfach nicht hin da die V I mir absolut unklar ist

Bezug
                                
Bezug
Vollsändige Induktion rekursiv: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Di 23.01.2007
Autor: leduart

Hallo
Was kannst du denn nicht?
1. Schritt: [mm] 1\le [/mm] a1<a0<2 durch einsetzen .dann [mm] Indvors:1\le an daraus folgern [mm] a_{n=1} Und jetzt muss du was tun, und sagen, wo du nicht weiterkommst!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de