www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Vollst. Ind. und Teleskopsumme
Vollst. Ind. und Teleskopsumme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollst. Ind. und Teleskopsumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Do 02.11.2006
Autor: Tevulytis

Aufgabe
Sei a [mm] \in \IR [/mm] mit a>0. Sei [mm] \IN_{0}:=\IN\cup\{0\}. [/mm] Beh.: Fur alle n [mm] \in \IN_{0} [/mm] gilt: [mm] \sum_{k=0}^{n}\frac{1}{(a+k)(a+k+1)}=\frac{n+1}{a(a+n+1)} [/mm]
a) Beweisen Sie obige Behauptung mit vollstandiger Induktion.
b) Schreiben Sie den k-ten Summanden der obigen Summe als Differenz zweier Bruche und berechnen Sie die Summe, ohne das Ergebnis aus der Behauptung zu benutzen. Hinweis: Der `Trick' in b) wird haufig als Teleskopsumme bezeichnet.

Hallo,

Es ist ziemlich dringen. Morgen bis 11.30 muss ich die Lösung der Aufgabe (wie auch die der anderen zwei Aufgaben, die ich heute Abend ins Forum stelle) abgeben. Also:

a) Induktionsanfang: n = 0: [mm] \bruch{1}{(a + 0)(a + 0 + 1)} [/mm] = [mm] \bruch{1}{a(a + 1)}. [/mm] Stimmt.

Induktionsvoraussetzung: Es gelte [mm] \sum_{k=0}^{n}\frac{1}{(a+k)(a+k+1)}=\frac{n+1}{a(a+n+1)} [/mm]  für ein n [mm] \in \IN. [/mm]

Induktionsschritt:
n [mm] \to [/mm] n + 1:
zu zeigen: [mm] \bruch{1}{(a + n)(a + n + 1)} [/mm] + [mm] \bruch{1}{(a + n + 1)(a + n +2)} [/mm] = [mm] \bruch{2}{a(a + n + 2)} [/mm]

Ich habe die beiden Terme auf einen gemeinsamen Nenner gebracht:

[mm] \bruch{(a + n + 2) + (a + n)}{(a + n)(a + n + 1)(a + n + 2)} [/mm]

Weiter kommt aber immer wieder irgendwas Kompliziertes heraus, schaffe die Kürzung nicht und komme nicht weiter. Was verpasse ich denn?


b) Die Teleskopsumme begegne ich zum erstenmal. Habe bei Wikipedia nachgeschaut (http://de.wikipedia.org/wiki/Teleskopsumme) und bekomme folgendes:

[mm] \sum_{k=0}^{n}(\frac{1}{(a+k)(a+k+1)}- \frac{1}{(a+k+1)(a+k+2)}) [/mm] = [mm] \bruch{1}{a(a + 1)} [/mm] - [mm] \bruch{1}{(a+n+1)(a+n+2)} [/mm] = ...

Was soll ich damit? Wieder auf'n gemeinsamen Nenner bringen? Da schaffe ich aber die Kürzung wieder nicht... Oder gibt es einen anderen Weg zur Lösung dieser Aufgaben?

Danke für jede Hilfe

Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt



        
Bezug
Vollst. Ind. und Teleskopsumme: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Do 02.11.2006
Autor: Gonozal_IX

Hiho,

Bei a) helf ich dir mal fix, bei b) musst dann aber schon nen bissl selbst rechnen ;-)

zu a)
Ind-Anf. hast du schon:

Ind-Schritt:

[mm]\sum_{k=0}^{n+1}\frac{1}{(a+k)(a+k+1)}=\sum_{k=0}^{n}\frac{1}{(a+k)(a+k+1)} + \bruch{1}{(a+n+1)(a+n+2)}[/mm]

[mm] = \bruch{n+1}{a(a+n+1)} + \bruch{1}{(a+n+1)(a+n+2)} = \bruch{(n+1)(a+n+2) + a}{a(a+n+1)(a+n+2)} = \bruch{na+n^2+2n+a+n+2+a}{a(a+n+1)(a+n+2)} [/mm]

[mm]= \bruch{n^2+3n+na+2a+2}{a(a+n+1)(a+n+2)} = \bruch{(n+2)(a+n+1)}{a(a+n+1)(a+n+2)} = \bruch{n+1}{a(a+n+2)}[/mm]

Fertig^^

zu b) sag ich dir die Schritte, sie machen musst du selbst :-)

1. Partialbruchzerlegung, d.h. [mm] \bruch{1}{(a+k)(a+k+1)} [/mm] = [mm] \bruch{A}{a+k} [/mm] + [mm] \bruch{B}{a+k+1} [/mm]
Bestimme A und B :-)

2. Summe dann auseinandernehmen, Indexverschiebung bei der zweiten Summe. Dann wird dir auffallen, das nur der erste Summand der ersten Summe und der letzte Summand der zweiten Summe stehen bleibt, alle kürzen sich raus, darum Teleskopsumme genannt :-)

Wenn du sie ausschreibst, würde es dann so aussehen:

[mm] s_0 [/mm] + [mm] s_1 [/mm] - [mm] s_1 [/mm] + [mm] s_2 [/mm] - [mm] s_2 [/mm] + ...... + [mm] s_n [/mm]

Daher der Name, du kannst die Summe zusammenschieben wie ein Teleskop.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de