www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Vollst. Induktion Ungleichung
Vollst. Induktion Ungleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollst. Induktion Ungleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:21 Do 23.10.2008
Autor: Theta

Aufgabe
Beweisen Sie die folgenden Aussagen mittels Vollständiger Induktion:

1. Es seien [mm] a_{1},...,a_{n} [/mm] und [mm] b_{1},...,b_{n} [/mm] Zahlen mit [mm] a_{j}
[mm] a_{1}+...+a_{n} [/mm] < [mm] b_{1}+...+b_{n}
[/mm]

Hallo,

ich soll genannte Aufgabe lösen. Und habe auch schon einen Ansatz, bin mir aber unsicher, ob die Lösung so richtig ist, geschweige denn der Aufgabenstellung entspricht.
Mein Ansatz ist folgender:


Seien Zahlen mit den genannten Eigenschaften gegeben:

Induktionsanker:

für n=1 gilt:
     [mm] a_{1}

Induktionsannahme:

Gelte für beliebiges, aber fest gewähltes n:
[mm] \summe_{i=1}^{n}a_{i} [/mm] < [mm] \summe_{i=1}^{n}b_{i} [/mm]

Induktionsschritt

[mm] a_{1}+...+a_{n}+a_{n+1} [/mm] < [mm] b_{1}+...+b_{n}+b_{n+1} [/mm]
[mm] =\summe_{i=1}^{n}a_{i}+a_{n+1} [/mm] < [mm] \summe_{i=1}^{n}b_{i}+b_{n+1} [/mm]

Sei nun:
[mm] \summe_{i=1}^{n}a_{i} [/mm] = A und [mm] \summe_{i=1}^{n}b_{i} [/mm] = B

So erhält man folgenden Ausdruck:
[mm] A+a_{n+1} [/mm] < [mm] B+b_{n+1} [/mm]


Nach Induktionsannahme gilt A < B und nach Vorraussetzung der Zahlen gilt [mm] a_{n+1} [/mm] < [mm] b_{n+1}. [/mm] Es folgt also aus der Induktionsannahme, dass auch der letzte Ausdruck wahr ist.



So sieht meine Argumentation aus. Ich würde mich freuen, wenn ich ein paar kurze Rückmeldungen bekommen könnte, ob das die Aufgabe ausreichend beantwortet. Wenn ja, dann kann ich mich ja an die übrigen Aufgaben setzen, sind nämlich alle vom gleichen Typ, ich hab nur meine Schwierigkeiten mit den Ungleichungen.

Danke im Vorraus,

Theta




Ich habe diese Frage in keinem Forum einer anderen Internetseite gestellt.

        
Bezug
Vollst. Induktion Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Do 23.10.2008
Autor: MarkusF

Der Weg ist OK, aber meiner Meinung nach fehlt noch der Induktionsschluss: Im Induktionsschritt wurde allgemein gezeigt, dass, wenn die Aussage für ein bestimmtes n gilt, auch für n+1 gilt.
Die Aussage gilt für n=1, also auch für n=2, n=3, usw.
Also gilt die Aussage für jedes [mm] n\ge1. [/mm]

Viele Grüße,
Markus

Bezug
                
Bezug
Vollst. Induktion Ungleichung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:46 Do 23.10.2008
Autor: Theta

Danke für die schnelle Reaktion und den Hinweis.

Sieht es vielleicht noch jemand anders, oder ist sich die Gemeinschaft einig? Werde es dann wohl am Wochenende mal sauber aufschreiben.



Grüße und Dank,

Theta

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de