www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Vollständige Induktion
Vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Überprüfung, Denkfehler
Status: (Frage) beantwortet Status 
Datum: 07:54 Mi 28.01.2015
Autor: Michi4590

Aufgabe
Beweisen Sie, dass gilt: [mm] 2^{3n}-1 \forall [/mm] n [mm] \in \IN [/mm] durch 7 teilbar

Induktionsanfang: n = 1;

7 ist durch 7 teilbar, Induktionsanfang in Ordnung. (*)

Induktionsschritt:

[mm] 2^{3(n+1)} [/mm] - 1
[mm] 2^{3n+3} [/mm] - 1
[mm] 2^{3n}*2^3 [/mm] -1
[mm] 2^{3n} [/mm] * (1+7)-1
[mm] 2^{3n} [/mm] + [mm] (2^{3n})*7 [/mm] - 1
[mm] 2^{3n} [/mm] - 1 ist bereits bewiesen, dass durch 7 teilbar, unter der Voraussetzung, dass * gilt.

Und [mm] 2^{3n}*7 [/mm] --> eine Zahl welche ich mit 7 multipliziere, ich auch durch 7 teilbar.


Wäre diese Aufgabe richtig?

Danke für Eure Hilfe :-)

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 Mi 28.01.2015
Autor: fred97


> Beweisen Sie, dass gilt: [mm]2^{3n}-1 \forall[/mm] n [mm]\in \IN[/mm] durch 7
> teilbar
>  Induktionsanfang: n = 1;
>  
> 7 ist durch 7 teilbar, Induktionsanfang in Ordnung. (*)

Es fehlt die Induktionsvoraussetzung. Wie lautet die ?


>  
> Induktionsschritt:
>  
> [mm]2^{3(n+1)}[/mm] - 1
> [mm]2^{3n+3}[/mm] - 1
> [mm]2^{3n}*2^3[/mm] -1
> [mm]2^{3n}[/mm] * (1+7)-1
>  [mm]2^{3n}[/mm] + [mm](2^{3n})*7[/mm] - 1

Warum schreibst Du das ohne Gleichheitszeichen einfach untereinander und nicht so:

     [mm] $2^{3(n+1)}-1=2^{3n+3}-1 [/mm] = [mm] ....=2^{3n}-1+7*2^{3n}$ [/mm]

??

>  [mm]2^{3n}[/mm] - 1 ist bereits bewiesen, dass durch 7 teilbar,


Nein, das ist nicht bewiesen. Das ist die Induktionsvoraussetzung !


> unter der Voraussetzung, dass * gilt.
>  
> Und [mm]2^{3n}*7[/mm] --> eine Zahl welche ich mit 7 multipliziere,
> ich auch durch 7 teilbar.

O.K.


>
>
> Wäre diese Aufgabe richtig?

Nein. Ein strenger Korrektor hätte Dir in einer Klausur 0 Punkte dafür gegeben.

FRED

>
> Danke für Eure Hilfe :-)  


Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:11 Mi 28.01.2015
Autor: Michi4590

Dann versuche ich es nochmal:

Induktionsanfang für n=1:

[mm] 2^{3n} [/mm] -1  = [mm] 2^{3*1}-1 [/mm] = 8-1 = 7  
7 ist durch 7 ohne Rest teilbar

Induktionsschritt:
[mm] 2^{3(n+1)} [/mm] - 1 =

>  [mm] 2^{3n+3} [/mm]  - 1 =  
>  [mm] 2^{3n}\cdot{}2^3 [/mm]  -1 =
>  [mm] 2^{3n} [/mm]  * (1+7)-1 =
>  [mm] 2^{3n} [/mm]  + [mm] (2^{3n})\cdot{}7 [/mm] - 1 = >

>  [mm] 2^{3n} [/mm] - 1 + [mm] (2^{3n})\cdot{}7 [/mm]  = >

Jetzt sollte ich sagen können, dass  [mm] 2^{3n} [/mm] -1 unter Voraussetzung des Induktionsanfanges durch 7 teilbar ist und ein Ausdruck, der mit 7 multipliziert ist auch durch 7 teilbar ist.

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:24 Mi 28.01.2015
Autor: hippias


> Dann versuche ich es nochmal:
>  
> Induktionsanfang für n=1:
>  
> [mm]2^{3n}[/mm] -1  = [mm]2^{3*1}-1[/mm] = 8-1 = 7  
> 7 ist durch 7 ohne Rest teilbar
>  
> Induktionsschritt:
> [mm]2^{3(n+1)}[/mm] - 1 =
> >  [mm]2^{3n+3}[/mm]  - 1 =  

> >  [mm]2^{3n}\cdot{}2^3[/mm]  -1 =

>  >  [mm]2^{3n}[/mm]  * (1+7)-1 =
>  >  [mm]2^{3n}[/mm]  + [mm](2^{3n})\cdot{}7[/mm] - 1 = >

Was soll denn auf einmal dieses Zeichen "=>"? Mach' es doch einfach so wie Fred vorgeschlagen hat.

> >  [mm]2^{3n}[/mm] - 1 + [mm](2^{3n})\cdot{}7[/mm]  = >

>  
> Jetzt sollte ich sagen können, dass  [mm]2^{3n}[/mm] -1 unter
> Voraussetzung des Induktionsanfanges

Nein. Der Induktionsanfang macht bei Dir ein Aussage ueber $n=1$. Im Induktionsschritt wird dieser Fall nicht nocheinmal abgehandelt; wieso sollte er auch? Wie Fred bereits sagte: Du wendest an dieser Stelle die Induktionsvoraussetzung an. Und wie er bereits sagte, solltest Du diese auch explizit formulieren. Damit solche Fehler nicht passieren.

> durch 7 teilbar ist
> und ein Ausdruck, der mit 7 multipliziert ist auch durch 7
> teilbar ist.  

Abgesehen von Schwaechen im Formalen sind Deine Ueberlegungen richtig.

Bezug
        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:38 Mi 28.01.2015
Autor: Michi4590

Vielen Dank für die Antworten. Wo --> auf einmal herkommt, ist mir auch ein Rätsel.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de