www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 09:50 Mi 25.04.2007
Autor: Ernie

Aufgabe
Hallo Leute!
Hab da nen "kleines" Problem mit ner Induktion.
Hoffe ihr könnt mir helfen.

Also:

Es sei     f(x)= [mm] (1+x)^a [/mm]   mit [mm] \betrag{x}<1 [/mm]  und  [mm] n\in\IN [/mm]

Beweise mittels vollständiger Induktion:


[mm] \bruch{f^n(x)}{n!}= \vektor{a \\ n}(1+x)^{a-n}. [/mm]

Der Induktionsanfang is klar. Habe Probleme beim Induktionsschluss, dabei kann ich den Term nicht so Umformen, dass die Behauptung für n+1 schtimmt.

Also danke für eure Hilfe.

LG Ernie

ich habe diese Frage in keinem anderen Forum gestellt.

Hallo Leute!
Hab da nen "kleines" Problem mit ner Induktion.
Hoffe ihr könnt mir helfen.

Also:

Es sei     f(x)= [mm] (1+x)^a [/mm]   mit [mm] \betrag{x}<1 [/mm]  und  [mm] n\in\IN [/mm]

Beweise mittels vollständiger Induktion:


[mm] \bruch{f^n(x)}{n!}= \vektor{a \\ n}(1+x)^{a-n}. [/mm]

Der Induktionsanfang is klar. Habe Probleme beim Induktionsschluss, dabei kann ich den Term nicht so Umformen, dass die Behauptung für n+1 schtimmt.

Also danke für eure Hilfe.

LG Ernie



        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Mi 25.04.2007
Autor: angela.h.b.


> Also:
>  
> Es sei     f(x)= [mm](1+x)^a[/mm]   mit [mm]\betrag{x}<1[/mm]  und  [mm]n\in\IN[/mm]
>  
> Beweise mittels vollständiger Induktion:
>  
>
> [mm]\bruch{f^n(x)}{n!}= \vektor{a \\ n}(1+x)^{a-n}.[/mm]
>  
> Der Induktionsanfang is klar. Habe Probleme beim
> Induktionsschluss, dabei kann ich den Term nicht so
> Umformen, dass die Behauptung für n+1 schtimmt.

Hallo,

es wäre nun extrem hilfreich, wenn wir sehen könnten, was Du bereits gerechnet hast...
Nur so können wir wissen, ob Du etwas falsch gemacht hast, oder ob Dir nur ein kleiner Dreh für eine Umformung fehlt.

Gruß v. Angela



Bezug
                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Mi 25.04.2007
Autor: Ernie

Hey,

danke für Deine Reaktion.

Also:


Habe auf der linken Seite für n gleich n+1 gesetzt.

Damit erhält man:

[mm] \bruch{f^{n+1} (x)}{(n+1)!} =\bruch{f^{n} (x)f(x)}{(n)!(n+1)}. [/mm]

Da heißt doch nun, dass ich die rechte Seite
mit  [mm] \bruch{f(x)}{(n+1)} [/mm] multiplizieren muss.

Also:

[mm] \bruch{f^ {n}(x)f(x)}{(n)!(n+1)}= \vektor{a\\ n}(1+x)^{a-n}\bruch{f(x)}{(n+1)} [/mm]    mit    f(x) = [mm] \vektor{a\\ n}(1+x)^{a-n} [/mm]    folgt:



[mm] \bruch{f^ {n}(x)f(x)}{(n)!(n+1)}= \vektor{a\\ n}(1+x)^{a-n}\bruch{1}{(n+1)}\vektor{a\\ n}(1+x)^{a-n}. [/mm]

Und wie komm ich jetzt auf

[mm] \bruch{f^{n+1} (x)}{(n+1)!} [/mm] = [mm] \vektor{a\\( n+1)}(1+x)^{a-(n+1)} [/mm] , was die Aussage ja beweisen würde ???
                  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de