www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:26 Mi 05.03.2008
Autor: kutzi

Aufgabe
1. Man zeige durch vollständige Induktion:

[mm] \summe_{k=1}^{2n} (-1)^k [/mm] k = n

Wie ist diese Gleichung zu lösen? Ich sitze hier schon den zweiten Tag an dieser Aufgabe.


Ist der Anfang korrekt?: n+(-1)^2n+1 (2n+1) ??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Mi 05.03.2008
Autor: DerVogel


> 1. Man zeige durch vollständige Induktion:
>  
> [mm]\summe_{k=1}^{2n} (-1)^k[/mm] k = n
>  Wie ist diese Gleichung zu lösen? Ich sitze hier schon den
> zweiten Tag an dieser Aufgabe.
>  
>


Moin,

da du ja Vollständige Induktion durchführen sollst, würde ich erstmal mit n=1 anfangen:

Dann ist [mm]\summe_{k=1}^{2*1} (-1)^k* k = (-1)^1* 1 + (-1)^2* 2 = -1+2 = 1 = n[/mm]


> Ist der Anfang korrekt?: n+(-1)^2n+1 (2n+1) ??
>  

Deinen Anfang verstehe ich nicht...

Ich würde dann [mm]\summe_{k=1}^{2n} (-1)^k *k = n[/mm] als richtig voraussetzen und die Gleichung für n+1 zeigen.

Gruß,
DerVogel


Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Mi 05.03.2008
Autor: kutzi

Entschuldigung, habe mich da etwas falsch ausgedrückt: Der Anfang mit n=1 ist klar, nur wie geht es dann mit dem Beweis weiter? Als Ergebnis muss ja ...=(n+1) herauskommen, um zu zeigen, das die Folge für jedes weitere n richtig ist.

nur wie komme ich dahin?



Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mi 05.03.2008
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo kutzi und erst einmal ganz herzlich [willkommenmr],

> Entschuldigung, habe mich da etwas falsch ausgedrückt: Der
> Anfang mit n=1 ist klar, nur wie geht es dann mit dem
> Beweis weiter? Als Ergebnis muss ja ...=(n+1) herauskommen,
> um zu zeigen, das die Folge für jedes weitere n richtig
> ist.

Das muss im Induktionsschritt bzw. im eigentlichen Induktionsbeweis rauskommen

Du musst zeigen, dass unter der Induktionsvoraussetzung: $\red{\sum\limits_{k=1}^{2n}(-1)^k\cdot{}k=n$ für ein beliebiges, aber festes n gefälligst auch

$\sum\limits_{k=1}^{2(n+1)}(-1)^k\cdot{}k=n+1$ ist

Dazu forme $\sum\limits_{k=1}^{2(n+1)}(-1)^k\cdot{}k$ so um, dass du die Induktionsvoraussetzung verwenden kannst, ich mache mal nen Anfang:

$\sum\limits_{k=1}^{2(n+1)}(-1)^k\cdot{}k=\sum\limits_{k=1}^{2n+2}(-1)^k\cdot{}k=\red{\left(\sum\limits_{k=1}^{2n}(-1)^k\cdot{}k\right)}+(-1)^{2n+1}\cdot{}(2n+1)+(-1)^{2n+2}\cdot{}(2n+2)$

Da habe ich nur die letzten beiden Summanden, also die für k=2n+1 und k=2n+2 extra geschrieben, so dass wir nun auf den roten Ausdruck die Induktionsvoraussetzung anwenden können:

$=\red{n}+(-1)^{2n+1}\cdot{}(2n+1)+(-1)^{2n+2}\cdot{}(2n+2)$

Nun versuche mal den hinteren Ausdruck zu vereinfachen, etwa indem du $(-1)^{2n+1}$ ausklammerst und fasse dann zusammen.

Am Schluss sollte dort insgesamt n+1 herauskommen ...


LG

schachuzipus

Bezug
                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mi 05.03.2008
Autor: kutzi

Vielen Dank, sehr anschaulich und verständlich =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de