Vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:22 Di 25.03.2008 | Autor: | LadyVal |
Aufgabe | Beweise Sie durch VI den Satz, dass in einem konvexen n-Eck [mm] (n\ge3) [/mm] die Winkelsumme (n-2)180° beträgt.
Dabei heißt ein n-Eck konvex, wenn sämtliche Innenwinkel kleiner als 180° sind. |
Wie eine Induktion theoretisch funktioniert, weiß ich schon. Nur leider komm ich praktisch hier gar nicht mal los: mir fehlt jeglicher Ansatz. Normalerweise hat man doch immer eine schöne (Un)gleichung. Hier hab ich ja aber nur ein Term.
Wie fang ich denn an?
Besten Dank für Eure Hilfe.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:37 Di 25.03.2008 | Autor: | abakus |
> Beweise Sie durch VI den Satz, dass in einem konvexen n-Eck
> [mm](n\ge3)[/mm] die Winkelsumme (n-2)180° beträgt.
> Dabei heißt ein n-Eck konvex, wenn sämtliche Innenwinkel
> kleiner als 180° sind.
> Wie eine Induktion theoretisch funktioniert, weiß ich
> schon. Nur leider komm ich praktisch hier gar nicht mal
> los: mir fehlt jeglicher Ansatz. Normalerweise hat man doch
> immer eine schöne (Un)gleichung. Hier hab ich ja aber nur
> ein Term.
> Wie fang ich denn an?
> Besten Dank für Eure Hilfe.
Hallo,
der Induktionsanfang liegt hier nicht bei n=1, sondern bei n=3.
Das Dreieck hat die Winkelsumme (3-2)*180°=180° (wahre Aussage).
Induktionsvoraussetzung: Die Winkelsumme im n-Eck ist (n-2)*180°.
Induktionsbehauptung: Die Winkelsumme im (n+1)-Eck ist ((n+1)-2)*180°.
So weit ist es sicher klar?
Wie entsteht ein (n+1)-Eck? Aus einem n-Eck, durch Hinzunahme eines weiteren Punktes [mm] P_{n+1}.
[/mm]
Skizziere dir ein n-Eck und außerhalb des n-Ecks (so zwischen den Punkten [mm] P_n [/mm] und [mm] P_1) [/mm] den neuen Punkt P{n+1}.
Verbinde diesen mit [mm] P_n [/mm] und [mm] P_1. [/mm] Verglichen mir der bisherigen Winkelsumme des n_Ecks kommen jetzt neu die Innenwinkel des Dreiecks [mm] P_1P_nP_{n+1} [/mm] dazu (also genau 180° mehr als vorher).
Die Winkelumme im (n+1)-Eck ist also (n-2)*180°+180°
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:57 Di 25.03.2008 | Autor: | LadyVal |
> Verglichen mir der bisherigen Winkelsumme des n_Ecks kommen jetzt
> neu die Innenwinkel des Dreiecks dazu (also genau 180° mehr als
> vorher).
> Die Winkelumme im (n+1)-Eck ist also (n-2)*180°+180°
Hey!
Bis incl "Verglichen mit (..) des Dreiecks dazu" kann ich es tatsächlich wunderbar nachvollziehen, aber ab dem, was Du in der Klammer schreibst habe ich leider wieder Schwierigkeiten (Sorry!).
Warum kommen genau 180° dazu, wenn ich einen neuen Punkt einfüge?
Und wo verwende ich explizit die IV?
1000 Dank Dir schomma, gell!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:09 Di 25.03.2008 | Autor: | abakus |
> > Verglichen mir der bisherigen Winkelsumme des n_Ecks kommen
> jetzt
> > neu die Innenwinkel des Dreiecks dazu (also genau 180° mehr
> als
> > vorher).
> > Die Winkelumme im (n+1)-Eck ist also (n-2)*180°+180°
>
>
> Hey!
> Bis incl "Verglichen mit (..) des Dreiecks dazu" kann ich
> es tatsächlich wunderbar nachvollziehen, aber ab dem, was
> Du in der Klammer schreibst habe ich leider wieder
> Schwierigkeiten (Sorry!).
> Warum kommen genau 180° dazu, wenn ich einen neuen Punkt
> einfüge?
> Und wo verwende ich explizit die IV?
> 1000 Dank Dir schomma, gell!
Markiere mal in deinem n-Eck (ohne den neuen Punkt) sämtliche Innenwinkel. Durch den (n+1). Punkt kommt nicht nur der Winkel am Punkt P{n+1} dazu.
Die bisherigen an den Punkten [mm] P_n [/mm] und [mm] P_1 [/mm] liegenden Innenwinkel vergrößern sich jeweils um ein Stück, weil es ja z.B. von [mm] P_n [/mm] nicht mehr direkt zu [mm] P_1 [/mm] geht, sondern "etwas weiter raus" zu [mm] P_{n+1}.
[/mm]
Es kommt also in der Summe genau die Innenwinkelsumme des angelagerten Dreiecks dazu.
Die IV verwendest du explizit, weil neue Summe = alte Summe + 180° ist. Die IV gibt ja die "alte Summe" an.
Gruß
Abakus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:17 Di 25.03.2008 | Autor: | LadyVal |
Mit ausführlicher Erklärung nochmal drüber nachgedacht und:
Wunderbar! Jetzt ists klar.
Ich dank Dir herzlichst!
.knicks. Val
|
|
|
|