www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Form des Beweises
Status: (Frage) beantwortet Status 
Datum: 15:07 So 24.07.2011
Autor: mcgeth

Aufgabe
Für jedes n [mm] \in \IN [/mm] bezeichnet [mm] S_n [/mm] die Summe der ersten n ungeraden Zahlen, also
[mm] S_n [/mm] := [mm] \summe_{k=1}^{n} [/mm] (2k-1)
Zeigen sie Für jesdes n [mm] \in \IN [/mm] ist
[mm] S_n [/mm] = [mm] n^2 [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hatte die vollständige Induktion eine geraume Zeit lang nicht mehr gemacht und hatte es wie Folgt versucht zu beweisen:

I.A.

n=1
[mm] 2*(1)-1=1^2 [/mm]
[mm] \Rightarrow [/mm] 2-1=1 [mm] \Rightarrow [/mm] 1=1

I. Behauptung n [mm] \Rightarrow [/mm] n+1

[mm] n^2 [/mm] + (2(n+1)-1) = [mm] (n+1)^2 [/mm]
[mm] \Rightarrow n^2+2n+2-1 [/mm] = [mm] n^2+2n+1 \Rightarrow n^2+2n+1 [/mm] = [mm] n^2+2n+1 [/mm]
QED

Ist es von Form und Beweisführung her ausreichend oder muss etwas ergänzt werden um einen ausreichenden Beweiss zu erhalten?

Grüße

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 So 24.07.2011
Autor: M.Rex

Hallo

Im Induktionsschritt musst du zeigen, dass:


[mm] \summe_{k=1}^{n+1}(2k-1)=(n+1)^{2} [/mm]

Dabei darfst du nutzen, dass:
$ [mm] \summe_{k=1}^{n}(2k-1)=n^{2} [/mm] $

Fang mal so an:

[mm] \summe_{k=1}^{n+1}(2k-1)=\left(\summe_{k=1}^{n}(2k-1)\right)+2(n+1)-1\stackrel{I.V.}{=}n^{2}+2(n+1)-1=\underbrace{n^2+2n+2-1=n^2+2n+1}_{deine Rechnung}=(n+1)^{2} [/mm]

Erkennst du den Unterschied zu deiner Argumentation?

Marius




Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 So 24.07.2011
Autor: mcgeth

Also kann ich icht beides direkt gleich setzen sondern muss das wissen aus dem I.A. nutzen um dann das herzuleiten, was auf der anderen Seite stehen sollte also [mm] (n+1)^2 [/mm] so kann ich beweisen, dass aus dem wissen des I.A. und der weiteren rechnung der Summe tatsächlich sich die gleichsetzung mit [mm] n^2 [/mm] bzw. [mm] (n+1)^2 [/mm] ergibt.

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 24.07.2011
Autor: M.Rex


> Also kann ich icht beides direkt gleich setzen sondern muss
> das wissen aus dem I.A. nutzen um dann das herzuleiten, was
> auf der anderen Seite stehen sollte also [mm](n+1)^2[/mm] so kann
> ich beweisen, dass aus dem wissen des I.A. und der weiteren
> rechnung der Summe tatsächlich sich die gleichsetzung mit
> [mm]n^2[/mm] bzw. [mm](n+1)^2[/mm] ergibt.

So ist es.

Du musst zeigen, dass man aus der Induktionsvoraussetzung (die Aussage gilt für ein n) folgern kann, dass die Aussage dann auch für n+1 gilt.

Das, in Kombination mit dem Induktionsanfang reicht dann aus.

Hier also:
Du weisst, die Ausasage gilt für n=1 (ind.Anfang)
Dann zeigst du, dass die Aussage fürn+1 auch gilt.

Wenn die aber für n=1 gilt, gilt sie aich für n=1+1=2, damit auch für n=2+1=3 usw.

Marius


Bezug
        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 So 24.07.2011
Autor: CaptainKirk

Ja, das ist meiner Meinung nach ausreichend, wenn man noch zum Schluss schreibt, dass [mm] n^{2} [/mm] + 2.n + 1 = [mm] (n+1)^{2} [/mm] ist, was deine Ausgangsvoraussetzung war.

Man kann die Annahme, dass Sn = [mm] n^{2} [/mm] gilt, in den Schritt von n auf
n + 1 verwenden, wie du das gemacht hast. Es hätte auch gereicht den Schritt von n - 1 auf n zu zeigen, was manchmal einfacher ist.

mfg
kirk

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de