www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Volumenberechnung
Volumenberechnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:37 Mi 15.02.2006
Autor: cauchyy

Aufgabe
Berechne das Volumen des Körpers K, der durch die drei Flächen x=y²+z², x=y und z=0 begrenzt wird.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Kann mir denn bitte jemand helfen, wie ich hier vorrangehen muss. Denke dass ich erst für die drei Integrale die Grenzen brauche. Wie sehe ich die in der Fragestellung. Ich wäre um einige Tipps sehr dankbar.

        
Bezug
Volumenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:17 Fr 17.02.2006
Autor: Leopold_Gast

Die Gleichung [mm]y^2 + z^2 = x[/mm] beschreibt ein Paraboloid; denn in die [mm]yz[/mm]-Ebene projiziert ist das ein Kreis vom Radius [mm]\sqrt{x}[/mm]. Das ist also nichts anderes, als wenn man sagt: Der Graph der Funktion [mm]f(x) = \sqrt{x}[/mm] rotiert um die [mm]x[/mm]-Achse. Und [mm]y=x[/mm] ist im [mm]xyz[/mm]-Raum eine Ebenengleichung. Wenn du dir einen Schnitt durch die [mm]xy[/mm]-Ebene denkst, so siehst du von all diesem die Parabel [mm]y = \sqrt{x}[/mm] und die Gerade [mm]y = x[/mm]. Die Parabel mußt du dir um die [mm]x[/mm]-Achse als rotierend denken, während die Gerade aus der [mm]xy[/mm]-Ebene senkrecht aufsteigt.

Der zu integrierende Bereich [mm]B[/mm] wird also durch drei Ungleichungen beschrieben:

[mm]B: \ \ y^2 + z^2 \leq x \, , \ \ y \geq x \, , \ \ z \geq 0[/mm]

Statt [mm]z \geq 0[/mm] könnte man genau so gut [mm]z \leq 0[/mm] wählen, denn die Ebene [mm]z=0[/mm] ist Symmetrieebene sowohl des Paraboloids als auch der Ebene [mm]y=x[/mm].

Für das konkrete Rechnen ist eine Substitution angebracht:

[mm]x = -u + v + \frac{1}{2} \, , \ \ y = v + \frac{1}{2} \, , \ \ z = w[/mm]

Denn dann geht B über in den Bereich

[mm]B': \ \ v^2 + w^2 \leq \frac{1}{4}-u \, , \ \ u \geq 0 \, , \ \ w \geq 0[/mm]

Um das zu sehen, mußt du in den Ungleichungen von [mm]B[/mm] nur [mm]x,y,z[/mm] entsprechend substituieren und vereinfachen. Wie du siehst, wurde die Substitution so gemacht, daß die lästige Beziehung [mm]y \geq x[/mm] in die einfachere [mm]u \geq 0[/mm] übergeht.

Und jetzt beachte die Substitutionsregel:

[mm]\int_B^{}~~\mathrm{d}(x,y,z) \ = \ \int_{B'}^{}~\left| \frac{\partial{(x,y,z)}}{\partial{(u,v,w)}} \right|~\mathrm{d}(u,v,w)[/mm]

Damit die Ungleichung [mm]v^2 + w^2 \leq \frac{1}{4} - u[/mm] erfüllbar ist, muß [mm]u \leq \frac{1}{4}[/mm] sein. Nach Fubini kannst du daher so rechnen:

[mm]\int_{B'}^{}~\left| \frac{\partial{(x,y,z)}}{\partial{(u,v,w)}} \right|~\mathrm{d}(u,v,w) \ = \int_0^{\frac{1}{4}}~\left( \int_{v^2 + w^2 \leq \frac{1}{4} - u \ , \ w \geq 0}^{}~\left| \frac{\partial{(x,y,z)}}{\partial{(u,v,w)}} \right|~\mathrm{d}(v,w) \right)~\mathrm{d}u[/mm]

Das innere Integral würde ich nicht mit Hilfe von Stammfunktionen oder Ähnlichem berechnen, sondern mich darauf berufen, daß sein Bereich einen Halbkreis vom Radius [mm]\sqrt{\frac{1}{4} - u}[/mm] beschreibt. Dann kann man den Wert sofort angeben.

Bezug
        
Bezug
Volumenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Fr 17.02.2006
Autor: cauchyy

Ok, danke. Echt super erklärt. Habe alles verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de