www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Volumenbrechnung
Volumenbrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenbrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Di 17.11.2009
Autor: martina.m18

hallo zusammen,

ich soll von einem rotationskörper, ein halber torus, entsteht durch rotation eines kreises um die x-Achse. der rotierende Kreis hat den radius r, wien mittelpunkt befindet sich im abstand R von der x-achse.

a.) gesucht das volumen des rotationskörpers?

wenn ich mir den körper vorstelle ist es ein gekrümter zylinder
also Grundfläche [mm] \pi*r^2 [/mm] * Höhe [mm] \pi*R [/mm]
[mm] ->V=\pi^2*r^2*R [/mm]

... jedoch steht in meiner aufgabenstellung, dass der rotationskörper die differenz zweier rotationskörper sei, welche dann jeweils als die funktion f(x) beschrieben werden soll......
kann mir jemand weiterhelfen??


        
Bezug
Volumenbrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Di 17.11.2009
Autor: MathePower

Hallo martina.m18,

> hallo zusammen,
>  
> ich soll von einem rotationskörper, ein halber torus,
> entsteht durch rotation eines kreises um die x-Achse. der
> rotierende Kreis hat den radius r, wien mittelpunkt
> befindet sich im abstand R von der x-achse.
>  
> a.) gesucht das volumen des rotationskörpers?
>  
> wenn ich mir den körper vorstelle ist es ein gekrümter
> zylinder
>  also Grundfläche [mm]\pi*r^2[/mm] * Höhe [mm]\pi*R[/mm]
>  [mm]->V=\pi^2*r^2*R[/mm]
>  
> ... jedoch steht in meiner aufgabenstellung, dass der
> rotationskörper die differenz zweier rotationskörper sei,
> welche dann jeweils als die funktion f(x) beschrieben
> werden soll......
>  kann mir jemand weiterhelfen??


Stelle hier zunächst die zugehörige Kreisgleichung auf.

Löse diese Kreisgleichung nach y auf.

Herauskommen dann die gesuchten zwei Funktionen.


Gruss
MathePower

Bezug
                
Bezug
Volumenbrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 17.11.2009
Autor: martina.m18

ok danke für den tip,
ich probiers, wenn ich mir den kreis an der x achse rotierend vorstelle

[mm] y_1= [/mm]  R  +  [mm] \wurzel{r^2-x^2} [/mm]
[mm] y_2= [/mm]  R  -   [mm] \wurzel {r^2-x^2} [/mm]

und mein integral

[mm] V_1= \pi\integral (R+\wurzel{r^2-x^2})^2 [/mm]
[mm] =\pi*R^2+2\wurzel{r^2-x^2}+r^2-x^2 [/mm]

[mm] V_2= \pi\integral (R-\wurzel{r^2-x^2})^2 [/mm]

[mm] V_2=........ [/mm]

ist der ansatz so richtig??

Bezug
                        
Bezug
Volumenbrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Di 17.11.2009
Autor: MathePower

Hallo martina.m18,

> ok danke für den tip,
>  ich probiers, wenn ich mir den kreis an der x achse
> rotierend vorstelle
>
> [mm]y_1=[/mm]  R  +  [mm]\wurzel{r^2-x^2}[/mm]
>  [mm]y_2=[/mm]  R  -   [mm]\wurzel {r^2-x^2}[/mm]


[ok]


>  
> und mein integral
>  
> [mm]V_1= \pi\integral (R+\wurzel{r^2-x^2})^2[/mm]


[mm]V_1= \pi\integral_{}^{}{(R+\wurzel{r^2-x^2})^2 \ \red{dx}}[/mm]


>  
> [mm]=\pi*R^2+2\wurzel{r^2-x^2}+r^2-x^2[/mm]


[mm]=\pi*\red{\integral_{}^{}}{R^2+2\wurzel{r^2-x^2}+r^2-x^2 \ dx}[/mm]


>  
> [mm]V_2= \pi\integral (R-\wurzel{r^2-x^2})^2[/mm]


[mm]V_2= \pi\integral_{}^{}{(R-\wurzel{r^2-x^2})^2 \ \red{dx}}[/mm]


>  
> [mm]V_2=........[/mm]
>  
> ist der ansatz so richtig??


Ja.

Hier mußt Du noch die Grenzen der Integrale bestimmen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de