Volumenintegrale < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:05 Di 07.02.2006 | Autor: | muhkuh |
Aufgabe | man zeige: die sllipse hat die fläche [mm] \pi*a*b
[/mm]
{(x,y) [mm] \in \IR^{2} [/mm] | [mm] \bruch{x^{2}}{a^{2}}+\bruch{y^{2}}{b^{2}} \le [/mm] 1} mit a,b > 0 |
Hallo, wir haben grade erst mit volumenintegralen angefangen, deswegen brauch ich etwas hilfe um den ansatz zu finden.
und zwar weiß ich nicht wie ich die Integrationsfläche B finden soll.
auf der y-achse müßte es doch eigentlich nur von -b/2 bis +b/2 gehen? wenn b die kleine, und a die große halbachse ist und die ellipse quer liegt, mit (0|0) als Mittelpunkt. die grenzen der x-achse müssen ja abhängig von a und b sein...wie finde ich die funktion, die die grenze beschreibt?es reicht ja wenn man die fläche des I und IV quadranten nimmt, und diese später verdoppelt.
und welche funktion muss dann anschließend integriert werden? ist es einfach [mm] \bruch{x^{2}}{a^{2}}+\bruch{y^{2}}{b^{2}}?
[/mm]
danke schonmal
gruß stefan
|
|
|
|
Hallo stefan,
schau dir mal einige threads im bereich integrations- und maßtheorie an, die insbesondere madde_dong und ich in der letzten woche bestritten haben. da sind zum teil sehr ähnliche aufgabenstellungen vorhanden.
grundsätzlich ist es bei solchen aufgaben so, dass man die charakteristische funktion über das gegebene gebiet (hier:ellipse) integrieren muss. Üblicherweise ist das mit dem satz von fubini machbar, dh. man integriert nacheinander die einzelnen achsen.
In deinem Fall mußt du zuerst zB. $x$ von $-a$ bis $a$ laufen lassen (maximaler range!) und dann $y$ entsprechend in abhängigkeit von $x$.
VG
Matthias
|
|
|
|