www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Regelungstechnik" - Von Ortskurve zu Bodediagramm
Von Ortskurve zu Bodediagramm < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Von Ortskurve zu Bodediagramm: Pole und Nullstellen erkennen
Status: (Frage) beantwortet Status 
Datum: 14:20 Fr 18.07.2014
Autor: gotoxy86

Aufgabe
Die Aufgabe ist es aus dieser schematischen Ortskurve ein schematisches Bodediagramm zu konstruieren.
http://www.directupload.net/file/d/3687/8o9kvd3h_png.htm

Ich denke mal, muss erkennen wo, die Pol und Nullstellen liegen, aber wie gehts das in diesem Falle?

Und ich weiß nicht wie man hier Bilder hochladet.

        
Bezug
Von Ortskurve zu Bodediagramm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Fr 18.07.2014
Autor: schachuzipus

Hallo,

> Und ich weiß nicht wie man hier Bilder hochladet.

Gehe auf "Artikel bearbeiten" und füge an die Stelle, an der das Bild auftauchen soll

[ img ] 1 [ \ img ] ein (aber ohne Zwischenräume).

Dann erscheint nach dem Absenden eine Maske, in der du aufgefordert wirst, den Dateianhang hochzuladen und einige Angaben zur Urheberschaft zu machen ...

Bei weiteren Bildern entsprechend hochnumerieren 2,3, ...

Gruß

schachuzipus

Bezug
        
Bezug
Von Ortskurve zu Bodediagramm: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Fr 18.07.2014
Autor: rmix22


> Die Aufgabe ist es aus dieser schematischen Ortskurve ein
> schematisches Bodediagramm zu konstruieren.
>  http://www.directupload.net/file/d/3687/8o9kvd3h_png.htm
>  Ich denke mal, muss erkennen wo, die Pol und Nullstellen
> liegen, aber wie gehts das in diesem Falle?
>  

Worin genau liegt dein Problem - die fehlende Skalierung? Sei froh!

Im gegebenen Nyquist-Diagramm (Frequenzgangortskurve) kannst du für jede Kreisfrequenz Amplitude und Phasenwinkel ablesen. Wir haben [mm] $\omega=0$ [/mm] zu Beginn beim Pfeil und [mm] $\omega\to\infty$ [/mm] rechts am anderen Ende beim Punkt. Die Parametrisierung dazwischen ist somit dir überlasssen.
Im Bodediagramm sollst du, so wie ich es verstehe, rein qualitativ Amplituden- und Frequenzgang eintragen.
Der Amplitudengang ergibt sich wohl durch die Beträge der Zeiger, also geometrisch durch den Abstand eines Kurvenpunktes vom Ursprung. Am Anfang ist der Betrag optisch am größten, nimmt dann ab bis zu einem Kurvenpunkt im 1. Quadranten und nimmt dann kontinuierlich wieder zu. Genau zeichnest du das in ein Diagramm, auf dessen Abszissenachse [mm] \omega [/mm] aufgetragen wird.
Ähnlich der Phasengang. Für [mm] $\omega=0$ [/mm] haben wir eine Phase von ca. 235° die dann kontinuierlich abnimmt, negativ wird und für hohe Frequenzen dann zum Schluss wieder zunimmt und gegen Null strebt.

Ich denke nicht, dass bei dieser Aufgabe wesentlich mehr verlangt ist.

Gruß RMix


Bezug
                
Bezug
Von Ortskurve zu Bodediagramm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 So 20.07.2014
Autor: gotoxy86

Okey, die Lösung sieht folgender Maßen aus.

Für [mm] |G|_{dB} [/mm] und [mm] \omega [/mm] gibt es keine spezifischen Werte.

Jedoch werden Angaben darüber gemacht, um wie viele [mm] \br{dB}{dek} [/mm] es abfällt oder zunimmt: -20, 0, -20, 20, 0

Das heißt der Tutor sah: Pol, Nst, Pol, doppelte Nst, Pol

Aber genau das sehe ich nicht, wie kann man das in der Ortskurve erkennen?

Bezug
                        
Bezug
Von Ortskurve zu Bodediagramm: Glaube ich nicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 So 20.07.2014
Autor: Infinit

Hallo gotoxy86,
irgendetwas fehlt da noch an Informationen. Aus einer Ortskurve, deren Skalen nicht angegeben sind, so etwas herauszulesen, geht nicht.
Das aus dem Bodediagramm zu erkennen aufgrund der Steilheit der einzelnen Abschnitte, das kann ich mir gut vorstellen.
Viele Grüße,
Infinit

Bezug
                        
Bezug
Von Ortskurve zu Bodediagramm: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 So 20.07.2014
Autor: rmix22


> Okey, die Lösung sieht folgender Maßen aus.
>  
> Für [mm]|G|_{dB}[/mm] und [mm]\omega[/mm] gibt es keine spezifischen Werte.
>  
> Jedoch werden Angaben darüber gemacht, um wie viele
> [mm]\br{dB}{dek}[/mm] es abfällt oder zunimmt: -20, 0, -20, 20, 0
>  
> Das heißt der Tutor sah: Pol, Nst, Pol, doppelte Nst, Pol
>  
> Aber genau das sehe ich nicht, wie kann man das in der
> Ortskurve erkennen?

Der Tutor hat all das bei der Ortskurve gesehen, auf die du im ersten posting verwiesen hast?

Soweit ich es sehe ist die Ortskurve  hier die Darstellung der Übertragungsfunktion in der Gaußebene in Abhängigkeit von der Frequenz.
Betrag und Phase des aktuellen Übertragungswerts werden durch die entsprechenden Größen des komplexen Zeigers zu einem Ortskurvenpunkt dargestellt.
Demnach liegt eine Nullstelle vor, wenn die Ortskurve durch den Ursprung läuft und eine Polstelle, wenn die Zeigerlänge gegen Unendlich strebt. Beides passiert bei der von dir vorgelegten Ortskurve aber nicht.




Bezug
                                
Bezug
Von Ortskurve zu Bodediagramm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 So 20.07.2014
Autor: gotoxy86

Vllt. sah der Tutor auch folgendes:

Pol, instabile Nst, Pol, doppelte instabile Nst, instabiler Pol

[mm] G(s)=\br{(s-w_2)(s-w_{4/5})^2}{(s+w_1)(s+w_3)(s-w_6)} [/mm]

Vllt. hat er auch zuerst die Phasen erkannt:

[mm] \br{dB}{dek}\qquad\phi [/mm]

[mm] -20\qquad-90 [/mm]

[mm] 0\qquad-180 [/mm]

[mm] -20\qquad-270 [/mm]

[mm] 20\qquad-450 [/mm]

[mm] 0\qquad-360 [/mm]

Bezug
                                        
Bezug
Von Ortskurve zu Bodediagramm: Vielleicht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 So 20.07.2014
Autor: Infinit

... und vielleicht hat der Tutor dabei auch Werte begutachtet und hat nicht nur so einfach Variablen angeschaut, deren Auswirkungen auf das Bodediagramm sich ihm auf geradezu unheimliche Weise erschlossen haben.

Und wenn das alles wahr ist, dann kann auch Deine obige Behauptung wahr sein.
Das ist doch schön.
Viele Grüße,
Infinit

Bezug
                                        
Bezug
Von Ortskurve zu Bodediagramm: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 So 20.07.2014
Autor: rmix22

Ich fürchte, dass meine erste Antwort zu vorschnell war.
Die Übertragungsfunktion ist ja eine Funktion von [mm] $\IC\to\IC, s\to{G(s)}$, [/mm] da gibt man für gewöhnlich das Pol-Nullstellendiagramm in der komplexen s-Ebene an. Die Ortskurve ist aber eine Funktion von [mm] $\IR\to\IC, \omega\to{G(j*\omega)}$. [/mm] da geht natürlich Information verloren und die Null- und Polstellen müssen sich daher auch keinesfalls so zeigen wie ich das vorhin angegeben habe.
Da gehts um die Anzahl der Quadranten, in denen sich die Ortskurve rumtreibt, etc. Allerdings müsste ich mich da erst schlau machen, wozu mir im Moment leider ein wenig die Zeit fehlt. Vielleicht zu einem späteren Zeitpunkt.

Tut mir Leid wegen der Fehlinformation.

Gruß RMix


Bezug
                                                
Bezug
Von Ortskurve zu Bodediagramm: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:10 So 20.07.2014
Autor: gotoxy86

vllt. habe ich es rausgefunden.

Verlauf der Ortskurve [mm] (\Delta\varphi): [/mm]
Start im III. Quadrant (-90)
Eintritt in II. Quadrant mit UZS (-90)
Eintritt in I. Quadrant mit UZS (-90)
Eintritt in IV. Quadrant mit UZS (-90)
[mm] \Rightarrow [/mm] Richtungswechsel im IV. Quadrant (-90*2)
Eintritt in I. Quadranten gegen UZS (+90)

UZS=Uhrzeigersinn

Das Ganze könnte auch was mit den Achsen zu tun haben, anstatt der Quadranten. Ich habe jedoch dazu im Internet nichts gefunden.

Ich weiß nicht, ob das jetzt Zufall ist, oder richtig.

Bezug
                                                        
Bezug
Von Ortskurve zu Bodediagramm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 22.07.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de