www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Von Schülern und Theaterkarten
Von Schülern und Theaterkarten < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Von Schülern und Theaterkarten: Frage zur Lösung
Status: (Frage) beantwortet Status 
Datum: 14:42 Sa 14.09.2013
Autor: starki

Aufgabe
Einer Gruppe von 15 Schülern werden 3 Theaterkarten angeboten. Auf wie viele Arten können die Karten verteilt werden, wenn sich die Karten auf nummerierte Sitzplätze beziehen und jeder Schüler nur eine Karte bekommen kann?

Also mein Ergebnis stimmt mit der Lösung überein, aber ich würde nur gerne wissen, ob mein Lösungsweg so stimmt oder ob es bloß Zufall ist, dass er stimmt.

Also hier wird ja nach der Anzahl gesucht. Also zuerst wähle ich drei Schüler aus der Menge aller Schüler und dafür wird der Binomialkoeffizient verwendet.

[mm] \vektor{15 \\ 3} [/mm]

Wenn ich nun meine drei Schüler hab, dann muss ich noch die Reihenfolge beachten. Also beim ersten Platz können noch drei Schüler passen, beim Zweiten zwei und beim Dritten nur einer. Macht 3! = 6

Also ist die Gesamtanzahl = 3! * [mm] \vektor{15 \\ 3} [/mm] = 15 * 14 * 13

Stimmt mein Gedankengang?

        
Bezug
Von Schülern und Theaterkarten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Sa 14.09.2013
Autor: Diophant

Hallo starki,

> Einer Gruppe von 15 Schülern werden 3 Theaterkarten
> angeboten. Auf wie viele Arten können die Karten verteilt
> werden, wenn sich die Karten auf nummerierte Sitzplätze
> beziehen und jeder Schüler nur eine Karte bekommen kann?
> Also mein Ergebnis stimmt mit der Lösung überein, aber
> ich würde nur gerne wissen, ob mein Lösungsweg so stimmt
> oder ob es bloß Zufall ist, dass er stimmt.

>

> Also hier wird ja nach der Anzahl gesucht. Also zuerst
> wähle ich drei Schüler aus der Menge aller Schüler und
> dafür wird der Binomialkoeffizient verwendet.

>

> [mm]\vektor{15 \\ 3}[/mm]

>

> Wenn ich nun meine drei Schüler hab, dann muss ich noch
> die Reihenfolge beachten. Also beim ersten Platz können
> noch drei Schüler passen, beim Zweiten zwei und beim
> Dritten nur einer. Macht 3! = 6

>

> Also ist die Gesamtanzahl = 3! * [mm]\vektor{15 \\ 3}[/mm] = 15 * 14
> * 13

>

> Stimmt mein Gedankengang?

Das passt alles. [ok]

Wie du []hier sehen kannst, hast du dir im Prinzip die Zählformel für das Urnenmodell Ziehen ohne Zurücklegen mit Beachtung der Reihenfolge

[mm] z=\bruch{n!}{(n-k)!} [/mm]

an Hand eines Beispiels selbst hergeleitet. Sehr schön! :-)


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de