www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Vorauss. Bramble Hilbert Lemma
Vorauss. Bramble Hilbert Lemma < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorauss. Bramble Hilbert Lemma: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Fr 27.01.2012
Autor: lannigan2k

Hallo zusammen,

ich sehe mir gerade das Bramble Hilbert Lemma an um eine [mm] H^{1,2,\Omega} [/mm] Norm abschätzung des Fehlers der Finite element approximation herzuleiten.

Dabei ist eine Voraussetzung des Lemmas,dass auf dem Ansatzraum (also hier das Referenzelement) Polynome bis zum Grad k exakt interpoliert werden müssen.

"Polynome exakt interpoliert" erschließt sich mir nicht. Angenommen mein Referenzobjekt ist im eindimensionalen Fall eine Strecke (0,1)
dann werden nur Polynome vom Grad 0 exakt interpoliert.

habe ich ein dreieck (d=2) als ansatzraum, dann werden nur polynome bis zum grad 1 exakt interpoliert

sehe ich das richtig?

        
Bezug
Vorauss. Bramble Hilbert Lemma: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Mo 30.01.2012
Autor: MatthiasKr

Hallo,
> Hallo zusammen,
>  
> ich sehe mir gerade das Bramble Hilbert Lemma an um eine
> [mm]H^{1,2,\Omega}[/mm] Norm abschätzung des Fehlers der Finite
> element approximation herzuleiten.
>  
> Dabei ist eine Voraussetzung des Lemmas,dass auf dem
> Ansatzraum (also hier das Referenzelement) Polynome bis zum
> Grad k exakt interpoliert werden müssen.
>  
> "Polynome exakt interpoliert" erschließt sich mir nicht.
> Angenommen mein Referenzobjekt ist im eindimensionalen Fall
> eine Strecke (0,1)
>  dann werden nur Polynome vom Grad 0 exakt interpoliert.
>  
> habe ich ein dreieck (d=2) als ansatzraum, dann werden nur
> polynome bis zum grad 1 exakt interpoliert
>  
> sehe ich das richtig?

falls die Frage noch relevanz für Dich hat: die Eigenschaft, die Du nicht verstehst ("Polynome exakt interpoliert") bezieht sich aus meiner sicht eher auf einen Operator als auf ein gebiet. Du kannst auch auf einem Intervall polynome beliebig hohen gerades interpolieren, wenn Du genügend stützstellen verwendest.

Insofern wäre es gut zu wissen, wie die Aussage in ihren Kontext (zB. das ganze Lemma) eingebettet ist.

gruss
matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de