www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Vorzeichen eines Terms
Vorzeichen eines Terms < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorzeichen eines Terms: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Do 21.08.2008
Autor: Siddh

Aufgabe 1
[mm]M^2[2l^2-(l+1)^2]-l^4p^2>0 [/mm]

Aufgabe 2
[mm]M^2[-l^2+2(l-1)^2]-p^2(l-1)^4 \leq 0[/mm]

Hallo!

Ich soll schrittweise herleiten wann die Terme das entsprechende Vorzeichen haben. Das Ergebnis ist mir bekannt, s.u.

M, p>0,  l muss ganzzahlig und positiv sein

ERG.:
1.) Für l größer 3 ist die Bedingung nie erfüllt (wobei l größer gleich 7 sein muss?!)

2.)
l muss mindestens 3 sein

Vielen Dank!


Mein Weg bisher jeweils erstmal die Nullstellen der quadratischen Gleichung in der eckigen Klammer bestimmen.
So weiß ich z.B. bei wann es auf jeden Fall < Null ist. Aber über die relative Größe zum zweiten Term sagt mir das doch immer noch nichts aus?!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:[http://www.onlinemathe.de/forum/Gleichung-poitiv-oder-negativ-II]

Das war schon vor 3 Tagen, leider ohne aussagekräftigen Antworten.
Ich versetehe es nach wie vor  nicht.

        
Bezug
Vorzeichen eines Terms: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Fr 22.08.2008
Autor: PeterB

Leider ist noch nicht ganz klar was du willst! Die Lösungen hängen in jedem Fall von $M$ und $p$ ab! Du solltest also sagen was du willst:

A)Eine Beschreibung der Lösungen in Abhängigkeit von $M$ und $p$, das ist möglich gibt aber ziemlich komplizierte Ausdrücke.
Oder
B) Lösungen für spezielle Werte von $M$ und $p$. Deine Musterlösungen scheinen darauf hinzuweisen, aber du sagst nichts über die Werte aus.

Ich schreibe mal ein paar kleine Gedanken, die nicht die Lösung sind, aber vielleicht hilfreich:

1)Die beiden Ungleichungen sind korreliert: Die erste ist genau dann für $(M,p,l)$ erfüllt, wenn die zweite für $(M,p,l+1)$ erfüllt ist, es reicht also eine zu lösen. (Das erkennt man durch Einsetzen von $l+1$ für l in die 2. Gleichung.

2) Für sehr große $l$ "gewinnt" immer der Term [mm] $-l^4p^2$. [/mm] Das heißt, für hinreichend große $l$ ist die erste Gleichung nicht erfüllt, die zweite schon. Die folgende Rechnung gibt eine Abschätzung für dieses $l$:

[mm] $M^2[2l^2-(l+1)^2]-l^4p^2\leq M^2[2l^2-l^2]-l^4p^2= M^2[l^2]-l^4p^2=l^2p^2(\frac {M^2} {p^2} -l^2)$ [/mm]

Der letzte Term ist jetzt genau dann kleiner als $0$, wenn [mm] $l>\frac [/mm] M p$. Das heißt wir haben als Teilergebnis:

(1) ist falsch wenn [mm] $l>\frac [/mm] M p$
und
(2) ist erfüllt wenn [mm] $l\geq \frac [/mm] M p -1$.

Da $l$ eine natürliche zahl ist, sind nur noch endlich viele Fälle zu überprüfen. Vielleicht ist das manuelle Überprüfen hier das Schnellste.

Gruß
Peter

Bezug
                
Bezug
Vorzeichen eines Terms: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Fr 22.08.2008
Autor: Siddh

Hallo Peter!

Vielen Dank für deine Mühe. Ich denke, das geht schon eher in die Richtung, wo es mal hin soll. Werde mir das später nochmal zu Gemüte führen und schauen, wie ich deinen "Input" unterbringen kann.

Bei evtl. Rückfragen, werd ich dann noch konkreter.
Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de