www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Vorzeichen von Erwartungswert
Vorzeichen von Erwartungswert < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorzeichen von Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Mo 22.12.2008
Autor: ric

Hallo,

ich habe eine kleines Problem. Seien X und Y zwei Zufallsvariablen. X ist standardnormalverteilt and Y ist positiv.Ich möchte nun das vorzeichen von E[XY] feststellen. Ich vermute, es wäre nicht negativ.
Ich weiß nicht, ob man überhaupt eine eindeutige Aussage darüber machen kann.
Vielen Dank für kleinen Hinweis!
Gruß

Fei
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vorzeichen von Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Mo 22.12.2008
Autor: Al-Chwarizmi


> Hallo,
>  
> ich habe eine kleines Problem. Seien X und Y zwei
> Zufallsvariablen. X ist standardnormalverteilt and Y ist
> positiv.Ich möchte nun das vorzeichen von E[XY]
> feststellen. Ich vermute, es wäre nicht negativ.
>  Ich weiß nicht, ob man überhaupt eine eindeutige Aussage
> darüber machen kann.
>  Vielen Dank für kleinen Hinweis!
>  Gruß


hallo ric,

"standardnormalverteilt" bedeutet ja insbesondere
Symmetrie bezüglich x=0 für die Dichtefunktion [mm] f_X [/mm]
von X. Weil [mm] f_Y(t)=0 [/mm] für [mm] t\le [/mm] 0, kann man schliessen,
dass auch die Dichtefunktion  [mm] f_{X*Y} [/mm]  symmetrisch
bezüglich der Ordinatenachse sein muss.

LG

Bezug
                
Bezug
Vorzeichen von Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mo 22.12.2008
Autor: ric

Danke für deine Antwort!

aber irgendwie habe ich nicht verstanden, wieso Die Dichtefkt von XY symmetrisch sein muss, gilt das nicht nur wenn X und Y unabhängig sind? und wie kann man das formal zeigen?

Danke

Fei

Bezug
                        
Bezug
Vorzeichen von Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Mo 22.12.2008
Autor: luis52

Moin ric,

[willkommenmr]

> aber irgendwie habe ich nicht verstanden, wieso Die
> Dichtefkt von XY symmetrisch sein muss, gilt das nicht nur
> wenn X und Y unabhängig sind?

Nein.

> und wie kann man das formal
> zeigen?

Ich zitiere aus (Seite 300)

@BOOK{Hoaglin83,
  title = {Understanding Robust and Exploratory Data Analysis},
  publisher = {John~Wiley},
  year = {1983},
  author = {David C. Hoaglin and Frederick Mosteller and John W. Tukey},
  address = {New~York}
}


The distribution of a random variable $X$ is symmetric around the
center of symmetry c if the random variables $X-c$ and $-(X-c)$ are
identically distributed.


Damit kannst du Als Behauptung beweisen (Setze c=0).

Uebrigens bin  ich nicht sehr gluecklich mit deiner Aufgabenstellung.
Wodurch garantierst du, dass der Erwartungswert von XY existiert?

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de