www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Probability" - WK einer Binomialv.
WK einer Binomialv. < Probability < Probability/Statisti < Grades 11-12 < School < Maths <
View: [ threaded ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ all forums  | ^ Tree of Forums  | materials

WK einer Binomialv.: Frage (beantwortet)
Status: (Question) answered Status 
Date: 14:06 So 17/02/2019
Author: Asura

Aufgabe
Eine Multiple-Choice-Klausur besteht aus 16 Fragen. Zu jeder Frage gibt es fünf
Antwortalternativen, von denen genau eine richtig ist.
a) Wie groß ist die Wahrscheinlichkeit, bei rein zufälligem Ankreuzen höchstens vier
Aufgaben richtig zu lösen?
b) Die Klausur wird von 1000 Studierenden bearbeitet. Alle Studierenden raten. Von
wie vielen Studierenden würden Sie mehr als vier richtig beantwortete Aufgaben
erwarten?

Guten Tag,
ich bin folgendermaßen an die Aufgaben herangegangen:

Ich habe die Binomialverteilungen der einzelnen Möglichkeiten (Keine, Eine, Zwei, Drei, Vier Antworten) ausgerechnet und addiert.
Binomial[16, [mm] 0]*(1/5)^0*(1 [/mm] - (1/5))^(16 - 0) +
...                                          +
Binomial[16, [mm] 4]*(1/5)^4*(1 [/mm] - (1/5))^(16 - 4)
und komme auf das Ergebnis: 0.798245

Laut meinen Lösungen, die mir vorliegen lautet das Ergebnis aber:
P(x ≤ 4) = P(0) + P(1) + P(2) + P(3) + P(4) = 0,01 + 0,05 + 0,13 + 0,21 + 0,23 = 0,63.

b)
Da ich in der oberen Aufgabe die Wahrscheinlichkeit für höchstens 4 berechnet habe, würde ich einfach die Gegenwahrscheinlichkeit nehmen 1-0.798245 = 0.201755
und diese dann mal n nehmen: 0.201755 * 1000. Natürlich ist das Ergebnis aber auch falsch, da der Wert in der Aufgabe a) nicht korrekt ist.





        
Bezug
WK einer Binomialv.: Antwort
Status: (Answer) finished Status 
Date: 16:17 So 17/02/2019
Author: Gonozal_IX

Hiho,


> Ich habe die Binomialverteilungen der einzelnen
> Möglichkeiten (Keine, Eine, Zwei, Drei, Vier Antworten)
> ausgerechnet und addiert.

Jop,


> Laut meinen Lösungen, die mir vorliegen lautet das Ergebnis aber:
>  P(x ≤ 4) = P(0) + P(1) + P(2) + P(3) + P(4)

Na bis hierhin seid ihr euch ja noch einig.
Und: Ich seh das wie du.
X sollte [mm] $\text{Bin}\left(\frac{1}{5},16\right)$ [/mm] verteilt sein.
Und damit komm ich auch auf dein Ergebnis.

Wo kommt deine "Lösung" her?

Gruß,
Gono


Bezug
View: [ threaded ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ all forums  | ^ Tree of Forums  | materials


^ Seitenanfang ^
www.vorhilfe.de