www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Wachstum
Wachstum < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 23.02.2010
Autor: LiliMa

Aufgabe
In einer Flasche werden zu Beginn 500 Hefezellen einbebracht. Unter günstigen Bedingungen nimmt die Anzahl der Hefezellen pro Stunde um 80% zu.

a) Erstellen Sie den Funktionsterm für die Anzahl f(t) Hefezellen zum Zeitpunkt t.
b) Ermitteln Sie die Wachstumsgeschwindigkeit und vergleichen Sie diese mit der Anzahl vorhandener Hefezellen.

Hi und guten Abend,

bei a) hatte ich eigentlich keine Probleme und bin auf [mm] f(t)=500*e^{0,405t} [/mm] gekommen.

Bei b) weis ich nicht sicher, wie man die Wachstumsgeschwindigkeit berechnet.
Ich dachte, dass man dafür die erste Ableitung braucht. Aber dann habe ich ja ne Funktion und keine wirkliche Geschwindigkeit.

Kann mir das bitte jemand erklären.

Viele Grüsse und schonmal Danke
Lilli

        
Bezug
Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Di 23.02.2010
Autor: fencheltee


> In einer Flasche werden zu Beginn 500 Hefezellen
> einbebracht. Unter günstigen Bedingungen nimmt die Anzahl
> der Hefezellen pro Stunde um 80% zu.
>  
> a) Erstellen Sie den Funktionsterm für die Anzahl f(t)
> Hefezellen zum Zeitpunkt t.
>  b) Ermitteln Sie die Wachstumsgeschwindigkeit und
> vergleichen Sie diese mit der Anzahl vorhandener
> Hefezellen.
>  Hi und guten Abend,
>  
> bei a) hatte ich eigentlich keine Probleme und bin auf
> [mm]f(t)=500*e^{0,405t}[/mm] gekommen.

oben schreibst du von einer 80% zunahme ,berechnet hast du jedoch 50%.

>
> Bei b) weis ich nicht sicher, wie man die
> Wachstumsgeschwindigkeit berechnet.
>  Ich dachte, dass man dafür die erste Ableitung braucht.
> Aber dann habe ich ja ne Funktion und keine wirkliche
> Geschwindigkeit.

denke mal du sollst f'(t) dann mit f'(t) vergleichen, weil ja nichts genaues in der aufgabe steht

>
> Kann mir das bitte jemand erklären.
>  
> Viele Grüsse und schonmal Danke
>  Lilli

gruß tee

Bezug
                
Bezug
Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Di 23.02.2010
Autor: LiliMa

danke schonmal tee.
Aber berechnet man nun die Wachstumsgeschwindigkeit indem man die Ableitung bildet? Und wie Vergleicht man zwei Funktionsgleichungen? Soll ich da einfach den Quotienten bilden?

Bezug
                        
Bezug
Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Di 23.02.2010
Autor: Kroni

Hi,

ja, die Wachstumsgeschwindigkeit entspricht der Ableitung deiner Funktion. Denn die Ableitung ist ja nichts anderes als [mm] $f'(t)=\frac{\Delta f}{\Delta t}$ [/mm] mit [mm] $\Delta [/mm] t [mm] \rightarrow [/mm] 0$, d.h. sowas wie Aenderung der Anzahl der Teilchen pro Aenderung der Zeit, also etwas pro Zeit, was ja dann einer Geschwindigkeit entspricht, aehnlich wie mit der "gewoehnlichen" Geschwindigkeit beim Autofahren, da ist ja auch [mm] $v=\frac{\Delta s}{\Delta t}$ [/mm] die mittlere Geschwindigkeit, wobei $s$ die Strecke ist. Die momentane Geschwindigkeit ist dann, wenn man die Strecke als Funktion der Zeit $s(t)$ kennt $v(t)=s'(t)$.

Also ist dann die Ableitung von $f$ nach der Zeit $t$ deine Wachstumsgeschwindigkeit. Jetzt kannst du dann $f'(t)$ mit $f(t)$ vergleichen, indem du zB den Quotienten berechnest, und damit dann angeben kannst, wie stark die Anzahl der Teilchen im Vergleich zu der Teilchenanzahl waechst. Das geht so schoen, weil $f(t)$ eine Exponential-Funktion ist.

LG

Kroni



Bezug
                                
Bezug
Wachstum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Di 23.02.2010
Autor: LiliMa

Vielen Dank.

Das heisst, dass immer wenn nach der Wachstumsgeschwindigkeit gefragt wird, ohne dass ein spezieller Zeitpunkt angegeben wird, dann muss ich immer nur die Ableitungsfunktion angeben?

Bezug
                                        
Bezug
Wachstum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Di 23.02.2010
Autor: abakus


> Vielen Dank.
>  
> Das heisst, dass immer wenn nach der
> Wachstumsgeschwindigkeit gefragt wird, ohne dass ein
> spezieller Zeitpunkt angegeben wird, dann muss ich immer
> nur die Ableitungsfunktion angeben?

Hallo,
du kannst ja gar keinen konkreten Zahlenwert angeben.
Wenn 100 Bakterien vorhanden sind, wächst die Bakterienzahl (durchschnitlich) um 80 Bakterien pro Stunde.
Etwas später, wenn 1000 Bakterien vorhanden sind, wächst die Bakterienzahl (durchschnitlich) um 800 Bakterien pro Stunde.
(und die Geschwindigkeit steigt ja sogar innerhalb einer Stunde permanent).
Du kannst also keine konkrete Wachstumsgeschwindigkeit angeben, sondern nur eine, die vom jeweils vorhandenen Bestand und damit vom jeweiligen Zeitpunkt abhängt.
Wachstumsgeschwindigkeit = Bestandsänderung pro (winzig kleiner) Zeiteinheit = 1. Ableitung des Bestands.
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de