www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Wachstumsmodelle
Wachstumsmodelle < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wachstumsmodelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:31 So 22.11.2009
Autor: Yujean

Aufgabe
Auf einem bestimmten Areal in Kanada lebten 1965 nach Schätzungen von Wissenschaftlern 2500 Robben. Sie vermehrten sich jährlich um 7.5%. Außerdem wurden damals jährlich 350 Robben wegen ihres Felles getötet.
Wie lange hätte es gedauert, bis die Robben ausgerottet gewesenwären, wenn es nicht inzwischen ein Verbot für die Tötung der Robben gegeben hätte?

Guten Abend,

Ich habe Probleme mit dieser Aufgabe und zwar, die Funktion ohne die 350 getöteten Tiere würde ja so lauten:

f(x)= [mm] 2500*1.075^x [/mm]

richtig?

aber wie bringe ich jetzt die 350 mit rein?

Danke
Yujean

        
Bezug
Wachstumsmodelle: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 Mo 23.11.2009
Autor: pelzig


> Ich habe Probleme mit dieser Aufgabe und zwar, die Funktion
> ohne die 350 getöteten Tiere würde ja so lauten:
>  
> f(x)= [mm]2500*1.075^x[/mm] richtig?

Nein, das würde bedeuten, dass jedes jahr genau 7,5% der ursprünglichen 2500 robben hinzukommen. Aber es kommen ja immer 7,5% von der Population im Jahr davor dazu. Also: Die Popoulation [mm] p_0 [/mm] am Anfang ist 2500, und in jedem Jahr kommen 7,5% der Population im Vorjahr hinzu, abzüglicher der 350 die getötet werden, d.h. [mm] $p_{n+1}=1.075\cdot p_n-350$ [/mm]

D.h. du hast eine Folge [mm] p_n [/mm] mit [mm] $p_{n+1}=\alpha p_n+\beta$ [/mm] für alle [mm] $n\in\IN$ [/mm] und irgendeinem Startwert [mm] $p_0$. [/mm]
Jetzt kann man mit Induktion zeigen, dass für eine solche Folge gilt [mm] $$p_n=\alpha^na_0+\beta\sum_{i=0}^{n-1}\alpha^i=\frac{\alpha^n(a_0-\alpha-\beta)+\beta}{1-\alpha}$$ [/mm] Ich denke damit kommst du weiter.

Gruß, Robert

Bezug
                
Bezug
Wachstumsmodelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:24 Mo 23.11.2009
Autor: Yujean

Vielen Dank für deine Antwort, aber ob man das so in der 12 Klasse verstehen soll ist glaub ich sehr fragwürdig ;-)

Also habe das mit der Population verstanden, aber wie das pn zustande kommt erlich gesgat nicht wirklich......

Bezug
                        
Bezug
Wachstumsmodelle: Antwort
Status: (Antwort) fertig Status 
Datum: 02:00 Mo 23.11.2009
Autor: leduart

Hallo
nach 1 Jahr ist noch klar: p1=2500*1.075-350
diese menge nimmt im nächsten Jahr um 7.5% zu  und 350 wegalso
p2=p1*1.075-350=(2500*1.075-350)*1.075-350
entsprechend
p3=p2*1.075-350=((2500*1.075-350)*1.075-350)*1.075-350
jetzt vereinfach ich mal, damit das nicht immer länger wird.
[mm] 2500*1.075^3-350*(1.075^2+1.075^1+1.075^0) [/mm]  das hoch 0 nur damit man das Gesetz sieht.
[mm] p4=p3*1.075-350=(2500*1.075^3-350*(1.075^2+1.075^1+1.075^0))*1.075-350=2500*1.075^4-350*(1.075^3+1.075^2+1.075^1+1.075^0) [/mm]
jetzt solltest du sehen, wie es weiterläuft:
....
[mm] pn=2500*1.075^n-350*(1.075^{n-1}+......+1.075^0) [/mm]
die Klammer ist mit q=1.075 eine geometrische Reihe
[mm] q^0+q^1+q^2+.....+q^{n-1} [/mm]
die solltest du ausrechnen können, sonst gäb es die Aufgabe nicht.
das hatte dir abakus schon etwas kürzer und mit Buchstaben staat der zahlen geschrieben.
Bei so Aufgaben rechnet man am besten immer die ersten paar jahre brav nacheinader aus, lässt aber die Rechnung stehen und rechnet nicht die ergebniszahl aus.
dann sieht man fast immer wie es weitereht.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de