Wachstumsprozesse < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:21 Do 09.11.2006 | Autor: | Kroete |
Aufgabe | Das Alter von Getränken wie Whisky oder wein kann nach einer Methode von Libby mithilfe des Gehaltes am radioaktiven Wasserstoff-Isotop Tritium ³H bestimmt werden. Dessen Gehalt ist im natürlichen Wasserkreislauf durch neubildung in den oberen Schichten der Atmosphäre und radioaktiven Zerfall konstant, in abgetrennten Flüssigkeitsproben kommt kein neues Tritium aus der Atmosphäre hinzu. Der Gehalt nimmt ab mit einer Halbwertszeit von 12,3 Jahren.
Wie alt ist ein Whisky der nur noch 30% des ursprünglichen Tritiumgehaltes aufweist?
|
Wir sollen nun die Exponentialgleichung aufstellen und die Aufgabe lösen. Dabei sollen wir folgende Funktion benutzen: [mm] f(t)=c*e^{k*t} [/mm] wobei c element der reelen Zahlen ist und k ungleich 0
Ich weiß nicht so ganz was k und c sein sollen! Ich glaub c ist die Anfangsmenge aber die ist hier ja nicht gegeben also hab ich die einfach ausrgerechnet indem ich bei f(t)=c*( [mm] \wurzel[12,3]{0,5} [/mm] )hoch t einfach 0,5 für f(t) und 12,3 für t eingesetzt habe. Dann hab ich folgende Funktion aufgestellt:
f(t)=1,017*( [mm] \wurzel[12,3]{0,5} [/mm] ) hoch x
dann hab ich für f(t) 0,03 eingesetzt wegen den 30% und hab das dann ausgerechnet und dann kam da 62,53 raus nur ich ich weiß nich ob das so richtig ist, weil ich ja eigentlich mit e rechnen soll, aber nicht verstehe wie!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:04 Do 09.11.2006 | Autor: | leduart |
Hallo kroete
> Das Alter von Getränken wie Whisky oder wein kann nach
> einer Methode von Libby mithilfe des Gehaltes am
> radioaktiven Wasserstoff-Isotop Tritium ³H bestimmt werden.
> Dessen Gehalt ist im natürlichen Wasserkreislauf durch
> neubildung in den oberen Schichten der Atmosphäre und
> radioaktiven Zerfall konstant, in abgetrennten
> Flüssigkeitsproben kommt kein neues Tritium aus der
> Atmosphäre hinzu. Der Gehalt nimmt ab mit einer
> Halbwertszeit von 12,3 Jahren.
> Wie alt ist ein Whisky der nur noch 30% des ursprünglichen
> Tritiumgehaltes aufweist?
>
> Wir sollen nun die Exponentialgleichung aufstellen und die
> Aufgabe lösen. Dabei sollen wir folgende Funktion benutzen:
> [mm]f(t)=c*e^{k*t}[/mm] wobei c element der reelen Zahlen
> ist und k ungleich 0
>
> Ich weiß nicht so ganz was k und c sein sollen! Ich glaub c
> ist die Anfangsmenge aber die ist hier ja nicht gegeben
mit c= Anfangsmenge hast du recht! [mm] denne^0=1 [/mm] und deshalb ist f(0)=c
Da es nicht um Mengen geht sondern nur um % musst du c nicht kennen, egal wie groß c ist, nach 12,3 jahren ist es noch c/2!
damit kannst du jetzt auch k bestimmen indem du für t=12,3 jahre f(t)=c/2 einsetzest.
[mm] f(12,3y)=c/2=c*e^{k*t}
[/mm]
[mm] c/2=c*e^{k*12,3} [/mm] durch c div:
[mm] 1/2=e^{k*12,3} [/mm] lln anwenden :ln1/2=k*12,3; -ln2=k*12,3 k=-ln2/12,3=0.05..
stehenlassen oder Zahl ausrechnen.
Jetzt die 30%, 30%von c ist 0,3*c
also gilt für die gesuchte Zeit t: [mm] 0,3c=c*e^{-0.05..*t}
[/mm]
durch c teilen und ln und t ausrechnen.
es ist sicher größer 12,3 und kleiner 12,3*2, denn nach 2 halbwertszeiten ist es ja nur noch 25%.
> also hab ich die einfach ausrgerechnet indem ich bei
> f(t)=c*( [mm]\wurzel[12,3]{0,5}[/mm] )hoch t
Die Funktion ist noch richtig, und wenn du hier [mm] 0,5=e^{ln0,5} [/mm] ersetzest hast du auch die gesuchte e-fkt.
Aber c kannst du daraus NICHT berechnen, du brauchst es ja auch nicht. wenn du ungern mit c rechnest setze c=1 Einheitsmenge, was die einheitsmenge ist liter ,Gallonen , kg pfund oder irgndwas ist ja egal
>einfach 0,5 für f(t)
> und 12,3 für t eingesetzt habe. Dann hab ich folgende
> Funktion aufgestellt:
> f(t)=1,017*( [mm]\wurzel[12,3]{0,5}[/mm] ) hoch x
> dann hab ich für f(t) 0,03 eingesetzt wegen den 30% und
1. 30%=30/100=0,3 und zweitens, wenn du mit f(0)=
1,017 rechnest müsstest du 0,3*1,017 rechnen.
Ohne die 2 (kleinen) Fehler wär das richtig! Aber weil alle Wissenschaftler sich angewöhnt haben mit [mm] e^{kt} [/mm] zu rechnen solltest du das vielleicht auch.
(eigentlich ist es egal, ob man deine Methode nimmt oder die mit e-fkt. reine Gewohnheitssache)
Gruss leduart.
|
|
|
|