www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Materialwissenschaft" - Wärmeleitfähigkeit
Wärmeleitfähigkeit < Materialwissenschaft < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Materialwissenschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wärmeleitfähigkeit: Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 20:02 Do 01.10.2015
Autor: Coxy

Aufgabe
Der elektronische Anteil der Wärmeleitfähigkeit kann analog zur elektrischen Leitfähigkeit beschrieben
werden. Elektrische Leitfähigkeit σ und Wärmeleitfähigkeit λ hängen über das Wiedemann-
Franzsche Gesetz zusammen: λ / σ = LT (T: Temperatur, L = [mm] \pi^2*k^2 [/mm] / [mm] (3e^2 [/mm] ) = 2.45 [mm] *10^{-8}WΩK^{-2} [/mm] :
Lorentz-Zahl), d.h. ein Material mit guter elektrischer Leitfähigkeit wird auch eine gute thermische
Leitfähigkeit zeigen.

Leiten Sie mit Hilfe des Gaußschen Satzes die folgende Gleichung ab:
1dim.:  [mm] \bruch{\partial T}{\partial t}= \bruch{-1*\partial J_{w}}{p*c*\partial x} [/mm]
3dim.:   [mm] \bruch{\partial T}{\partial t}= \bruch{-1*\nabla \vec{J_{w}}}{p*c} [/mm]
Hinweis: dE(x, y, z,t) = c*p*T(x, y, z,t)dxdydz
Die zeitliche Änderung der im Volumen enthaltenen Energie ist gleich der Energie, die im Zeitintervall dt,
über die Oberfläche abfließt.

Für nahezu beliebige Gebiete, hier der Einfachheit halber ein Würfel W, lautet der Gauß'sche Satz
[mm] \integral_{}^{}{}\integral_{w}^{}{}\integral_{}^{}{ }\nabla \vec{u}*dV= \oint \oint \vec{u}*d\vec{S} [/mm]

d.h. das Integral eines Vektorfeldes [mm] \vec{u} [/mm]
über die Oberfläche des Würfels liefert
das gleiche Ergebnis wie die Integration der Divergenz dieses Vektorfeldes über das Volumen des
Würfels.
Der Verlust an Wärmeenergie pro Zeiteinheit dQ/dt aus dem Würfel ist gleich dem Wärmestrom, der
über die Würfeloberfläche abfließt, also
[mm] \bruch{dQ}{dt}=\oint_{\partial w} \oint [/mm] - [mm] \vec{J_{w}}*d\vec{S} [/mm]
Die Wärmemenge ist gegeben durch das Integral der Energie über den Würfel, also mit dem Hinweis:
[mm] Q=\integral_{}^{}{} \integral_{w}^{}{} \integral_{}^{}{} [/mm] c*p*T*dV
Schließlich erhält man
[mm] \bruch{dQ}{dt}= \integral_{}^{}{} \integral_{w}^{}{} \integral_{}^{}{} c*p*\bruch{dT}{dt}*dV=- \integral_{}^{}{} \integral_{}^{}{} \integral_{}^{}{} \nabla \vec{J_{w}}*dV [/mm]
Da diese Gleichung für jeden beliebigen Würfel gilt, erhält man durch Vergleich der Termen unter
dem Volumenintegral

Also ich habe folgende Frage:
Ich verstehe nicht wie man von
[mm] \bruch{dQ}{dt}= \integral_{}^{}{} \integral_{w}^{}{} \integral_{}^{}{} c*p*\bruch{dT}{dt}*dV=- \integral_{}^{}{} \integral_{}^{}{} \integral_{}^{}{} \nabla \vec{J_{w}}*dV [/mm]

zu
1dim.:  [mm] \bruch{\partial T}{\partial t}= \bruch{-1*\partial J_{w}}{p*c*\partial x} [/mm]
3dim.:   [mm] \bruch{\partial T}{\partial t}= \bruch{-1*\nabla \vec{J_{w}}}{p*c} [/mm]

kommen soll. Bis zu diesem Punkt habe ich nämlich alles verstanden.
Ich hoffe es kann mir jemand weiterhelfen.
Schöne Grüße
Coxy

        
Bezug
Wärmeleitfähigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Do 01.10.2015
Autor: leduart

Hallo
Da die 2 Integrale für BELIEBIGE Würfel gelten, muss der Integrand in beiden gleich sein.
(das gilt i.A. nicht, wenn sie nur  über einen Würfel gelten)
du kannst auch den Würfel ja beliebig klein machen, dann ist das integral fast Integrand [mm] *\Delta [/mm] V
Gruß leduart

Bezug
                
Bezug
Wärmeleitfähigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Fr 02.10.2015
Autor: Coxy

So wie ich dich verstanden habe meinst du das ich aus
[mm] \bruch{dQ}{dt}= \integral_{}^{}{} \integral_{w}^{}{} \integral_{}^{}{} c\cdot{}p\cdot{}\bruch{dT}{dt}\cdot{}dV=- \integral_{}^{}{} \integral_{}^{}{} \integral_{}^{}{} \nabla \vec{J_{w}}\cdot{}dV [/mm]

folgendes machen kann
[mm] c\cdot{}p\cdot{}\bruch{dT}{dt}=- \nabla \vec{J_{w}} [/mm]

mir erschließt sich aber noch nicht ganz warum die Integrale verschwinden.
Ich vermute ich darf nicht einfach ein Integral auf beiden Seiten entfernen d.h. dadurch teilen?

Bezug
                        
Bezug
Wärmeleitfähigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 So 04.10.2015
Autor: leduart

Hallo
ist dir klar, dass wenn [mm] \integral_{a}^{b}{f(x) dx}=\integral_{a}^{b}{g(x) dx} [/mm] ÜBER BELIEBIGE STRECKEN  ab gilt dass dann f(x)=g(x)
überlege warum, es gilt nicht, wenn es nur für einige Strecken ab gilt!
3d ist das nicht sehr anders.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Materialwissenschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de