www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Wärmeleitungsgleichung
Wärmeleitungsgleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wärmeleitungsgleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:35 So 03.01.2010
Autor: Phorkyas

Aufgabe
Wir betrachten das Anfangswertproblem für die Wärmeleitungsgleichung auf [mm]\IR^n[/mm]
[mm]\bruch{\partial}{\partial t}f(t,x)=\Delta f(t,x) ,t>0[/mm]
[mm]\lim_{t\to 0}f(t,x)=g(x)[/mm] mit [mm]g\in S(\IR^n)[/mm], Schwartzraum

Beweise: Wenn [mm]f(t,x)\in C^\infty (\IR \times \IR^n)[/mm] ist und [mm]f(t_0 ,x)\in S(\IR^n) \forall t_0 >0[/mm]
[mm]\Rightarrow f(t,x)=(K_t \* g)(x)[/mm]

mit [mm]\*[/mm] dem Faltungsoperator und [mm]K_t(x)=\bruch{1}{(4\pi t)^{n/2}}e^{-\bruch{x^2}{4t}}[/mm]

Zum wiederholtenmale Grüße Matheraum.

Ich habe bei obiger Aufgabe bereits gezeigt, das [mm]K_t(x)[/mm] eine Lösung der DGL ist. (Durch nachrechnen der Gleichung [mm]\bruch{\partial}{\partial t}K_t(x)-\Delta K_t(x)=0[/mm].

Momentan hänge ich an der Begründung, das dann auch [mm](K_t\* g)(x)[/mm] die Gleichung löst. Hier fehlt mir allerdings die Idee, ich weiß ja über g nichts weiter, als das es im Schwartzraum liegt.

Wenn ich das gezeigt habe, dann fehlt noch, das die gefundene Lösung eindeutig ist und das [mm](K_t\* g)(x)\in C^\infty (\IR \times \IR^n)[/mm] und [mm](K_t0\* g)(x) \in S(\IR^n) \forall t_0 >0[/mm]. Richtig?

Also zum einen: Wie mache ich das mit der Faltung?
zum andern: Ist die Aufgabe gelöst, wenn ich das mit der Faltung und die beiden Bedingungen aus dem letzten Abschnitt gezeigt habe?

Ich habe die Frage in keinem anderen Forum gestellt.

Für Hinweise und Ideen bin ich wie immer dankbar.

Grüße
Phorkyas

        
Bezug
Wärmeleitungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Di 05.01.2010
Autor: Phorkyas

Grüße nochmals.

Also die Sache mit der Faltung habe ich jetzt hinbekommen.
Ich konnte zeigen, dass
[mm]D^\alpha (f \*g)(x)=((D^\alpha f)\*g)(x) \forall f\in C^\infty[/mm]
Daraus folgt dann sofort, dass [mm](K_t \* g)(x)[/mm] auch eine Lösung der DGL ist.

Jetzt bin ich mir nur nicht sicher, ob ich die Aufgabe gelöst habe, wenn ich die beiden verbliebenen Aussagen gezeigt habe.
Auch die Eindeutigkeit macht mir große Sorgen.
Wie zeige ich sowas?

Wäre für Hilfe sehr dankbar!

Grüße
Phorkyas

Bezug
                
Bezug
Wärmeleitungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:13 Fr 08.01.2010
Autor: rainerS

Hallo!

> Grüße nochmals.
>  
> Also die Sache mit der Faltung habe ich jetzt hinbekommen.
>  Ich konnte zeigen, dass
>  [mm]D^\alpha (f \*g)(x)=((D^\alpha f)\*g)(x) \forall f\in C^\infty[/mm]
>  
> Daraus folgt dann sofort, dass [mm](K_t \* g)(x)[/mm] auch eine
> Lösung der DGL ist.
>  
> Jetzt bin ich mir nur nicht sicher, ob ich die Aufgabe
> gelöst habe, wenn ich die beiden verbliebenen Aussagen
> gezeigt habe.

Was willst du da zeigen? Die Faltung zweier Schwartzfunktionen ist eine Schwartzfunktion.

>  Auch die Eindeutigkeit macht mir große Sorgen.
>  Wie zeige ich sowas?

Die Wärmeleitungsgleichung ist eine lineare PDGL. Da kannst du doch direkt nachrechnen, dass die Differenz zweier Lösungen 0 ist.

Viele Grüße
   Rainer



Bezug
        
Bezug
Wärmeleitungsgleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 06.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de