www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Wahr oder Falsch
Wahr oder Falsch < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahr oder Falsch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Do 12.08.2010
Autor: melisa1

Aufgabe
Welche der Aussagen sind falsch, welche richtig?

1) Ist [mm] D\subseteq \IR [/mm] abgeschlossen sowie f: D-R gleichmäßig  stetig, so ist f beschränkt

2) Ist f:R-R stetig differenzierbar mit f'(x)>0 für alle x [mm] \in [/mm] R,so ist f injektiv.

3)Ist f:R-R stetig differenzierbar und injektiv, so ist f'(x)>0 für alle x [mm] \IR [/mm]

4) z-z(beim zweiten z ist ein strich oben) [mm] \in [/mm] R, für alle [mm] z\in \IC [/mm]

Hallo,

ich hatte heute eine Prüfung und habe hier nur geraten.

Die erste habe ich ausgelassen und bei den anderen dreien habe ich richtig geschrieben. Ich würde mich freuen, wenn mir jemand sagen kann, was richtig und was falsch ist.


Lg Melisa

        
Bezug
Wahr oder Falsch: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Do 12.08.2010
Autor: fred97


> Welche der Aussagen sind falsch, welche richtig?
>  
> 1) Ist [mm]D\subseteq \IR[/mm] abgeschlossen sowie f: D-R
> gleichmäßig  stetig, so ist f beschränkt
>  
> 2) Ist f:R-R stetig differenzierbar mit f'(x)>0 für alle x
> [mm]\in[/mm] R,so ist f injektiv.
>  
> 3)Ist f:R-R stetig differenzierbar und injektiv, so ist
> f'(x)>0 für alle x [mm]\IR[/mm]
>  
> 4) z-z(beim zweiten z ist ein strich oben) [mm]\in[/mm] R, für alle
> [mm]z\in \IC[/mm]
>  Hallo,
>  
> ich hatte heute eine Prüfung und habe hier nur geraten.
>  
> Die erste habe ich ausgelassen und bei den anderen dreien
> habe ich richtig geschrieben. Ich würde mich freuen, wenn
> mir jemand sagen kann, was richtig und was falsch ist.


Zu 1.

Diese Aussage ist falsch ! Beispiel: D = [mm] \IR, [/mm] f(x)=x. D ist abgeschlossen und f ist auf D glm. stetig, f ist aber nicht beschränkt.

Zu 2.

Diese Aussage ist richtig.

Seien x,y [mm] \in \R [/mm] und x [mm] \ne [/mm] y. Nach dem Mittelwertsatz gibt es ein t zwischen x und y mit

                $f(x)-f(y)= (x-y)*f'(t)$

Aus der Vor. folgt: f(x) [mm] \ne [/mm] f(y).

Zu 3.

Diese Aussage ist falsch: Beispiel: [mm] $f(x)=x^3$ [/mm] . f ist stetig differenzierbar und injektiv auf [mm] \IR, [/mm] aber $f'(0)=0$

Zu 4.

Diese Aussage ist falsch. Für $z=x+iy$  $(x,y [mm] \in \IR$) [/mm] ist

        [mm] $z-\overline{z}= [/mm] x+iy-(x-iy)= 2iy [mm] \not\in \IR$ [/mm]  , falls y [mm] \ne [/mm] 0


FRED

>  
>
> Lg Melisa


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de