www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrsch. Spiel Verlustreihe
Wahrsch. Spiel Verlustreihe < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrsch. Spiel Verlustreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Mo 24.07.2006
Autor: mathe007

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo,
bei einem Spiel betrage die Trefferquote 40 %, also 60 % Nieten. Wie gross ist die p fuer x Nieten in Folge? Meine Loesung:
p fuer 2 Nieten in Folge: [mm] 0,4^2 [/mm]  = 0,360
p fuer 3 Nieten in Folge: [mm] 0,4^3 [/mm]  = 0,216
p fuer 4 Nieten in Folge: [mm] 0,4^4 [/mm]  = 0,130
usw.
Richtig oder falsch? Wenn falsch, dann wie?
Beim gleichen Spiel ist die Frage, wie hoch ist die p, dass die Nietenserie endet? Meine Loesung:
p fuer Ende der Nietenserie nach 2 Nieten: 1 [mm] -0,4^2 [/mm] = 0,840
p fuer Ende der Nietenserie nach 3 Nieten: 1 [mm] -0,4^3 [/mm] = 0,936
p fuer Ende der Nietenserie nach 4 Nieten: 1 [mm] -0,4^4 [/mm] = 0,974
Richtig/falsch? Wenn falsch, dann wie?

Vielen Dank
Juergen

        
Bezug
Wahrsch. Spiel Verlustreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Mo 24.07.2006
Autor: MasterEd

Hallo,

Deine erste "Lösung" ist falsch. Bei zwei Nieten musst Du ja eine Niete ziehen und dann noch eine. Also [mm] $P=0,6*0,6=0,6^2$ [/mm] usw.

Es muss außerdem sicher sein, dass sie die Wahrscheinlichkeiten während des Ziehens nicht ändern. Hast Du z.B. eine Urne mit 4 Gewinnlosen und 6 Nieten, so beträgt die WS für eine Niete beim 1. Ziehen 60%, danach beträgt sie aber nur noch 5/9=55,5%, danach nur noch 4/8=50% usw.

Im zweiten Teil hast Du die WS dafür angegeben, dass nicht x Nieten gezogen werden. Dies lässt leider keine Aussage über die Reihenfolge der Ziehung zu. Man weiß nicht, an welcher Stelle der x Ziehungen der Gewinn gezogen wird. Damit triffst Du folglich auch keine Aussage über das Ende der Serie.

Die Nietenserie endet mit der 2. Ziehung, wenn das erste Los eine Niete ist und das zweite nicht. Dann ist P=0,6*0,4.
Die Serie endet mit der 3. Ziehung, wenn die ersten beiden Lose Nieten sind. [mm] P=0,6^2*0,4. [/mm]
Usw.

Wieder gilt, dass sich hier die WS nicht ändern, sonst müsste man die Rechnung anpassen.

Bezug
                
Bezug
Wahrsch. Spiel Verlustreihe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:58 Mo 24.07.2006
Autor: mathe007

Hallo,
die Wahrscheinlichkeiten sind immer gleich, die gezogenen Treffer bzw Nieten werden also sofort wieder in den Topf geworfen (Bernoulli).

Ich habe im ersten Teil der Frage was verbockt: statt [mm] 0,4^2 0,4^3 [/mm]  und [mm] 0,4^4 [/mm] muss es natuerlich heissen: [mm] 0,6^2 0,6^3 [/mm]  und  [mm] 0,6^4. [/mm]
Die Ergebnisse p 0,36 p 0,216 p 0,13 mussten trotz der falschen Eingaben stimmen. Oder nicht?

Beste Gruesse
Juergen

Bezug
                        
Bezug
Wahrsch. Spiel Verlustreihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 26.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de