www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Wahrscheinlich zum Maximumspr.
Wahrscheinlich zum Maximumspr. < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlich zum Maximumspr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Sa 13.05.2006
Autor: FrankM

Aufgabe
Bestimmen sie alle holomorphen Funktion f:  [mm] \{z \in \IC :1<|z|<2 \} \to \IC [/mm] für die für alle z mit |z-1,5|<0,4 gilt |f(z)| [mm] \ge [/mm]  |f(1,5)|=2.

Hallo,

bei der obigen Aufgabe finde ich keinen richtigen Ansatz.
Die Aufgabe sieht ja irgendwie nach dem Maximumsprinzip aus, da man die Abschätzung für den Betrag hat. Aber der Betrag ist ja nach unten und nicht nach oben beschränkt. Daher weiß ich nicht wie ich an die Aufgabe ran gehen sollen.

Gruß
Frank


        
Bezug
Wahrscheinlich zum Maximumspr.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Sa 13.05.2006
Autor: felixf

Hallo Frank!

> Bestimmen sie alle holomorphen Funktion f:  [mm]\{z \in \IC :1<|z|<2 \} \to \IC[/mm]
> für die für alle z mit |z-1,5|<0,4 gilt |f(z)| [mm]\ge[/mm]  
> |f(1,5)|=2.
>  Hallo,
>
> bei der obigen Aufgabe finde ich keinen richtigen Ansatz.
>  Die Aufgabe sieht ja irgendwie nach dem Maximumsprinzip
> aus, da man die Abschätzung für den Betrag hat. Aber der
> Betrag ist ja nach unten und nicht nach oben beschränkt.
> Daher weiß ich nicht wie ich an die Aufgabe ran gehen
> sollen.

Versuchs mal mit der Cauchyschen Integral-Formel fuer den Funktionswert [mm] $f(\frac{3}{2})$. [/mm] Und schaetz dann das Integral nach unten ab, und ueberleg fuer welche Funktionen diese Abschaetzung tatsaechlich angenommen wird (wenn ich mich jetzt nicht vertan hab, gibt es genau eine).

LG Felix


Bezug
                
Bezug
Wahrscheinlich zum Maximumspr.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:51 Sa 13.05.2006
Autor: FrankM

Danke Felix für deine schnelle Hilfe.

Ich habe die Aufgabe jetzt erst so gelöst wie du es vorgeschlagen hast.
Die gesuchten Funktionen sind alle konstanten Funktionen mit Betrag 2 also in der Form:
  [mm] 2e^{it}, [/mm] mit t konstant.

Frank

Bezug
                        
Bezug
Wahrscheinlich zum Maximumspr.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Sa 13.05.2006
Autor: felixf

Hallo Frank!

> Ich habe die Aufgabe jetzt erst so gelöst wie du es
> vorgeschlagen hast.
>  Die gesuchten Funktionen sind alle konstanten Funktionen
> mit Betrag 2 also in der Form:
>    [mm]2e^{it},[/mm] mit t konstant.

Stimmt, ist doch mehr als eine :D

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de