www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Standartnormalverteilte
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 18.06.2014
Autor: siggi571

Aufgabe
Die Zufallsvariable X ist normalverteilt mit dem Mittelwert = 2 und der SAW = 0,5. Berechnen Sie die Wahrscheinlichkeit unter der Verwedung der Verteilungfunktion I(u) der Standardnormalverteilung von P(|X| <= 2,13)

Hallo Community,

ich habe ein Problem bzgl dieser Aufgabe.

Ich komme zwar auf ein Ergebnis, welches meiner Meinung nach richtig sein sollte, es aber laut Lösung nicht ist.
Allerdings steht da nirgends ein Rechenweg.
Deshalb gehe ich davon aus, dass ich irgendwo einen Fehler gemacht habe.

Mein Rechenweg:

P(|X| <= 2,13).

U = [mm] \bruch{X-\mu}{SAW} [/mm]

= [mm] \bruch{2,13-2}{0,5} [/mm] = 0,26.


=> 2*I(0,26) - 1 = p = 0,2052

(Nr.: I(0,26) ist laut Tabelle 0,6026)

So, die Lösung sagt nun aber p=0,6026

Wo ist mein Fehler? Meinen die mit Ihrer Lösung am ende nur die Standarteinheit U?

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Mi 18.06.2014
Autor: Diophant

Hallo,

> Die Zufallsvariable X ist normalverteilt mit dem Mittelwert
> = 2 und der SAW = 0,5. Berechnen Sie die Wahrscheinlichkeit
> unter der Verwedung der Verteilungfunktion I(u) der
> Standardnormalverteilung von P(|X| <= 2,13)
> Hallo Community,

>

> ich habe ein Problem bzgl dieser Aufgabe.

>

> Ich komme zwar auf ein Ergebnis, welches meiner Meinung
> nach richtig sein sollte, es aber laut Lösung nicht ist.
> Allerdings steht da nirgends ein Rechenweg.
> Deshalb gehe ich davon aus, dass ich irgendwo einen Fehler
> gemacht habe.

>

> Mein Rechenweg:

>

> P(|X| <= 2,13).

>

> U = [mm]\bruch{X-\mu}{SAW}[/mm]

>

> = [mm]\bruch{2,13-2}{0,5}[/mm] = 0,26.

>
>

> => 2*I(0,26) - 1 = p = 0,2052

>

> (Nr.: I(0,26) ist laut Tabelle 0,6026)

>

Dein Rechenweg enthält hier einen beliebten Fehler: Der Ansatz

[mm] P=2\Phi(z)-1 [/mm]

ist hier hier falsch (er funktioniert nur für ein Intervall, welches symmetrisch um den Erwartungswert liegt). Hier muss man mit

[mm] P=\Phi(z_2)-\Phi(z_1) [/mm]

rechnen, wobei du letzteren Wert noch, sagen wir mal nicht: ermitteln, sondern klarmachen musst, da er bekanntlich wegen [mm] z_1=\bruch{-2.13-2}{0.5}=-8.26<0 [/mm] nicht in der Tabelle steht. Ein Funktionswert der Phi-Funktion in diesem Bereich darf allerdings getrost gleich Null angesetzt werden, ohne dass man einen nennenswerten Fehler begeht...

> So, die Lösung sagt nun aber p=0,6026

Ja, und die Tatsache, dass dies offensichtlich gleich [mm] P(X\le{2.13}) [/mm] ist, rührt eben von [mm] \Phi(-8.26)\approx{0} [/mm] her.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de