www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Komplexität & Berechenbarkeit" - Wahrscheinlichkeit
Wahrscheinlichkeit < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Lange frage!
Status: (Frage) beantwortet Status 
Datum: 19:44 So 13.01.2008
Autor: Yas

Hallo zusammen !
*Aus einem Skatspiel (32 Karten) werden 3 Karten gezogen und beiseite gelegt. Wie hoch ist die Wahrscheinlichkeit, im dritten zug eine As zu ziehen, wenn bereits mindestens ein As gezogen wurde?

M.F.G






Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 So 13.01.2008
Autor: ONeill


> Hallo zusammen !
>  *Aus einem Skatspiel (32 Karten) werden 3 Karten gezogen
> und beiseite gelegt. Wie hoch ist die Wahrscheinlichkeit,
> im dritten zug eine As zu ziehen, wenn bereits mindestens
> ein As gezogen wurde?
>  
> M.F.G

Hallo!
In deiner Frage fehlen Ansätze beziehungsweise eine Beschreibung deiner Probleme.

Gruß ONeill

Bezug
                
Bezug
Wahrscheinlichkeit: schwierigkeiten
Status: (Frage) beantwortet Status 
Datum: 20:31 So 13.01.2008
Autor: Yas

wie kann ich wissen ob dass 2 As oder ein gezogen ist ??
M.F.G.
Yaseen

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 So 13.01.2008
Autor: Xafra

Also als erstes gilt ja allgemein, dass 1 - P(kein Ass) = P(mindestens unter den ersten Karten 1 Ass)
Der Gesamte Ergebnisraum  für dieses erste Teilgebiet ist hierbei 2Karten aus 32. Also [mm] \pmat{ 32 \\ 2 } [/mm] = (32 * 31)/2[um die Anzahl der gleichen Lösungsmöglichkeiten herauszudividieren] = 496
Nun zur Anzahl der Möglichkeiten:

N(mindestens 1 Ass unter den ersten Karten)=Gesamter Ergebnisraum - [mm] \pmat{ 28 \\ 2 }= [/mm] 118
Es gibt also 118 Möglichkeiten, dass mindestens ein Ass unter den ersten Karten ist.

Für 3 Karten aus 32 Karten gibt es [mm] \pmat{ 32 \\ 3 } [/mm] Möglichkeiten also 4960

[mm] P=\bruch{N(bestimmte Möglichkeiten)}{N(alle Möglichkeiten)} [/mm]

> wie kann ich wissen ob dass 2 As oder ein gezogen ist ??

Also jetzt soll bereits nur 1 Ass gezogen worden sein:

=> P= [mm] \bruch{118+\pmat{3\\1}}{\pmat{ 32 \\ 3 }} [/mm] also hier 120/4960

Oder es wurden bereits 2 Asse gezogen:

=> P= [mm] \bruch{118+ \pmat{ 2 \\ 1 }}{\pmat{ 32 \\ 3 }} [/mm] also hier 121/4960

Tut mir Leid aber anders kann ich mir das auch  nicht erklären als alles durchzurechnen. Vielleicht sollte man jetzt auch den Mittelwert davon bilden...
Vielleicht kann dir da ja noch jemand anderes Weiterhelfen! :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de