www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Wahrscheinlichkeit Basketball
Wahrscheinlichkeit Basketball < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit Basketball: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:27 Do 31.12.2009
Autor: Clone

Aufgabe
Ein Spieler trifft bei 10 Wuerfen 8 Mal den Basketballkorb.
Wie hoch ist die Wahrscheinlichkeit, dass der Spieler 13 Treffer bei 15 Wuerfen erlangt?

Hallo,

hier bin ich folgendermassen herangegangen:
Bei den 10 Wuerfen hat der Spieler eine Wahrscheinlichkeit von 80% erlangt.
Das heisst, dass bei 15 Wuerfen 12 sicher sind, wenn die 80% die Regel sind.
Wie hoch die Wahrscheinlichkeit fuer 13 Treffer ist... nun ja.. hier suche ich noch einen Ansatz.
Vielen Dank!

Gruss

Clone

        
Bezug
Wahrscheinlichkeit Basketball: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Do 31.12.2009
Autor: steppenhahn

Hallo Clone,

> Ein Spieler trifft bei 10 Wuerfen 8 Mal den
> Basketballkorb.
>  Wie hoch ist die Wahrscheinlichkeit, dass der Spieler 13
> Treffer bei 15 Wuerfen erlangt?

Dein Vorgehen wird dich leider nicht so richtig weiterbringen (wie du vielleicht schon selbst gemerkt hast).

"Ein Spieler trifft bei 10 Wuerfen 8 Mal den Basketballkorb". Das bedeutet, dass er im Allgemeinen eine Trefferwahrscheinlichkeit von 0,8 hat.
Nun handelt es sich bei einem Wurf auf den Basketballkorb um ein Bernoulli-Experiment, uns interessieren also nur zwei verschiedene Ausgänge: Treffer oder nicht. Wir wissen, dass ein Treffer mit einer Wahrscheinlichkeit von 0,8 eintritt.
Nun hast du aber nicht einen Wurf, sondern 15. Dabei handelt es sich um eine Bernoulli-Kette, bzw. um eine Binomialverteilung (diese Begriffe solltest du schonmal gehört haben) mit n = 15 und p = 0,8. Du bist an der Wahrscheinlichkeit P(X=13) interessiert.

Grüße,
Stefan

Bezug
                
Bezug
Wahrscheinlichkeit Basketball: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Do 31.12.2009
Autor: Clone

Hallo,

stimmt, mein Ansatz war voellig falsch.

Die Bernoulli-Formel lautet:
[mm] P(x=k)=\vektor{n \\ k}*p^{k}*(1-p)^{n-k} [/mm]

In unserem Beispiel ist n=15 Wuerfe, k=13 Treffer, p=0,8

[mm] P(13)=\vektor{15 \\ 13}*0,8^{13}*(1-0,8)^{15-13} [/mm]

[mm] =\bruch{15*14*13*12*11*10*9*8*7*6*5*4*3}{1*2*3*4*5*6*7*8*9*10*11*12*13}*0,8^{13}*(0,2)^{2} [/mm]

[mm] =\vektor{15 \\ 2}*0,8^{13}*(1-0,8)^{15-13} [/mm]

[mm] =\bruch{15*14}{1*2}*0,8^{13}*(0,2)^{2} [/mm]

[mm] \approx [/mm] 0,231

Das muesste stimmen.

Gruss

Bezug
                        
Bezug
Wahrscheinlichkeit Basketball: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Do 31.12.2009
Autor: steppenhahn

Hallo Clone,

> Hallo,
>  
> stimmt, mein Ansatz war voellig falsch.
>  
> Die Bernoulli-Formel lautet:
>  $ [mm] P(x=k)=\vektor{n \\ k}\cdot{}p^{k}\cdot{}(1-p)^{n-k} [/mm] $
>  
> In unserem Beispiel ist n=15 Wuerfe, k=13 Treffer, p=0,8
>  
> $ [mm] P(13)=\vektor{15 \\ 13}\cdot{}0,8^{13}\cdot{}(1-0,8)^{15-13} [/mm] $
>  
> $ [mm] =\bruch{15\cdot{}14\cdot{}13\cdot{}12\cdot{}11\cdot{}10\cdot{}9\cdot{}8\cdot{}7\cdot{}6\cdot{}5\cdot{}4\cdot{}3}{1\cdot{}2\cdot{}3\cdot{}4\cdot{}5\cdot{}6\cdot{}7\cdot{}8\cdot{}9\cdot{}10\cdot{}11\cdot{}12\cdot{}13}\cdot{}0,8^{13}\cdot{}(0,2)^{2} [/mm] $
>  
> $ [mm] =\vektor{15 \\ 2}\cdot{}0,8^{13}\cdot{}(1-0,8)^{15-13} [/mm] $
>  
> $ [mm] =\bruch{15\cdot{}14}{1\cdot{}2}\cdot{}0,8^{13}\cdot{}(0,2)^{2} [/mm] $
>  
> $ [mm] \approx [/mm] $ 0,231
>  
> Das muesste stimmen.

Tut es auch :-) [ok]

Grüße,
Stefan

Bezug
                                
Bezug
Wahrscheinlichkeit Basketball: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Do 31.12.2009
Autor: luis52

Moin Stefan,

gestern noch in Stochastik tastend
heute schon darin beratend ... ;-)

Klasse, weiter so!

Alles Gute und ein erfolgreichreiches Jahr 2010.

vg Luis        

Bezug
                                        
Bezug
Wahrscheinlichkeit Basketball: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 Do 31.12.2009
Autor: steppenhahn

Hallo luis,

danke für dein Lob :-), dir auch ein schönes neues Jahr 2010!
Aber hierbei handelte es sich ja noch um Schulmathematik, das geht ja noch ;-)

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de