www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Wahrscheinlichkeit berechnen
Wahrscheinlichkeit berechnen < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mo 10.09.2007
Autor: kleine_Frau

Aufgabe
Es werden gleichzeitig 3 Karten aus einem Spiel mit 32 Karten gezogen, Mit welcher Wahrscheinlichkeit zieht man
a) drei Buben (Lösung: 0,08%)
b) keinen Buben (Lösung: 66,05%)
c) höchstens einen Buben (Lösung: 96,53%)
d) nur Herz (Lösung: 1,13%)
e) mindestens 2 Herz (Lösung: 14,68%)
f) weder Herz noch Bube (Lösung: 26,81%)
g) entweder drei Herzen oder drei Buben (Lösung: 0,73%)
h) drei Karten derselben Farbe (Lösung: 4,52%)
i) drei Karten unterschiedlicher Farben (Lösung: 41,29%)
k) drei Karten desselben Werts (Lösung: 0,65%)

Ich finde irgendwie keinen Ansatz. Das ist bestimmt total einfach.
Also das Kartenspiel hat insgesamt 32 Karten.
Es gibt 4 Buben im Spiel und 8 Herz-Karten.

Ich denke, dass man das mit folgender Formel rechnen muss:
http://de.wikipedia.org/wiki/Hypergeometrische_Verteilung

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Wahrscheinlichkeit berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mo 10.09.2007
Autor: luis52


>  Ich finde irgendwie keinen Ansatz. Das ist bestimmt total
> einfach.

Dass du so gar keinen Ansatz findest, kann ich gar nicht glauben.  


>  
> Ich denke, dass man das mit folgender Formel rechnen muss:
>  http://de.wikipedia.org/wiki/Hypergeometrische_Verteilung

Manchmal.

Es gibt [mm] ${32\choose 3}=4960$ [/mm] Moeglichkeiten, 3 Karten aus 32
auszuwaehlen. Willst du die Wahrscheinlichkeiten der o.g. Ereignisse
berechnen, so musst du auszaehlen, auf wieviel Weisen das jeweilige
Ereignis zustande kommt. Bezeichnet man diese Haeufigkeit mit $h$,
so ist die Wahrscheinlichkeit gegeben durch $h/4906$.

Nehmen wir Teilaufgabe i). Es gibt 4 Moeglichkeiten, unterschiedliche
Farben auszuwaehlen. Fuer jede dieser 4 Farbzusammenstellung gibt es
[mm] $8^3$ [/mm] Moeglichkeiten, Karten der drei unterschiedlichen Farben
zusammenzustellen. Mithin ist [mm] $h=4\times 8^3=2048$ [/mm] und $h/4906=0.4129$,
wie behauptet.

lg
Luis                

Bezug
        
Bezug
Wahrscheinlichkeit berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Di 11.09.2007
Autor: Somebody


> Es werden gleichzeitig 3 Karten aus einem Spiel mit 32
> Karten gezogen, Mit welcher Wahrscheinlichkeit zieht man
> a) drei Buben (Lösung: 0,08%)

[mm]\mathrm{P}(\text{drei Buben})=\frac{\binom{4}{3}}{\binom{32}{3}}[/mm]


>  b) keinen Buben (Lösung: 66,05%)

[mm]\mathrm{P}(\text{keinen Buben})=\frac{\binom{32-4}{3}}{\binom{32}{3}}[/mm]


>  c) höchstens einen Buben (Lösung: 96,53%)

[mm]\mathrm{P}(\text{höchstens einen Buben})=\frac{\binom{32-4}{3}+\binom{4}{1}\cdot\binom{32-4}{2}}{\binom{32}{3}}[/mm]


>  d) nur Herz (Lösung: 1,13%)

[mm]\mathrm{P}(\text{nur Herz})=\frac{\binom{8}{3}}{\binom{32}{3}}[/mm]


>  e) mindestens 2 Herz (Lösung: 14,68%)

[mm]\mathrm{P}(\text{mindestens 2 Herz})=1-\mathrm{P}(\text{0 oder 1 Herz})=1-\frac{\binom{32-8}{3}+\binom{8}{1}\cdot\binom{32-8}{2}}{\binom{32}{3}}[/mm]


>  f) weder Herz noch Bube (Lösung: 26,81%)

[mm]\mathrm{P}(\text{weder Herz noch Bube})=\frac{\binom{32-8-2}{3}}{\binom{32}{3}}[/mm]


>  g) entweder drei Herzen oder drei Buben (Lösung: 0,73%)

[mm]\mathrm{P}(\text{3 Herz oder 3 Buben})=\frac{\binom{8}{3}+\binom{4}{3}}{\binom{32}{3}}[/mm]


>  h) drei Karten derselben Farbe (Lösung: 4,52%)

Erst eine Farbe auswählen, dann Karten...
[mm]\mathrm{P}(\text{gleiche Farbe})=\frac{\binom{4}{1}\cdot\binom{8}{3}}{\binom{32}{3}}[/mm]


>  i) drei Karten unterschiedlicher Farben (Lösung: 41,29%)

Erst drei Farben auswählen, dann Karten...
[mm]\mathrm{P}(\text{drei verschiedene Farben})=\frac{\binom{4}{3}\cdot \binom{8}{1}^3}{\binom{32}{3}}[/mm]


>  k) drei Karten desselben Werts (Lösung: 0,65%)

Erst einen Wert auswählen, dann Karten...
[mm]\mathrm{P}(\text{drei gleiche Werte})=\frac{\binom{8}{1}\cdot\binom{4}{3}}{\binom{32}{3}}[/mm]


>  Ich finde irgendwie keinen Ansatz.
> Das ist bestimmt total einfach.

Richtig.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de