www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit für Trumpf
Wahrscheinlichkeit für Trumpf < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit für Trumpf: Erklärung
Status: (Frage) beantwortet Status 
Datum: 22:46 Fr 17.06.2016
Autor: Lord_Snow

Aufgabe
Kartenspiel mit 54 Karten, 22 Trumpf, 4 Spieler, jedem werden 12 Karten geteilt (restliche 6 sind Talon). Wie hoch ist die durchschnittliche Anzahl von Trumpf, die jedem Spieler geteilt wird?

Hallo Mathe-Experten, meine Schullaufbahn liegt schon sehr lang zurück, ich kann mich an die Prinzipien der Wahrscheinlichkeitsrechnung nicht mehr erinnern und wäre froh über eine Erklärung, wie das obige Problem gelöst werden kann.

War das so ein Fall eines Bernoulli-Experiments? Wenn ja, ist dann die Wahrscheinlichkeit für k Trumpf:
P(k) = [mm] \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}, [/mm]
wobei n = 12 und p = 22/54?

Und die durchschnittliche Anzahl ergibt sich dann aus
1 [mm] \cdot [/mm] P(1) + 2 [mm] \cdot [/mm] P(2) + … 12 [mm] \cdot [/mm] P(12)?

Vielen Dank für die Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit für Trumpf: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Fr 17.06.2016
Autor: HJKweseleit


> Kartenspiel mit 54 Karten, 22 Trumpf,

Somit sind 22/54 aller Karten Trumpf

> 4 Spieler, jedem
> werden 12 Karten geteilt (restliche 6 sind Talon). Wie hoch
> ist die durchschnittliche Anzahl von Trumpf, die jedem
> Spieler geteilt wird?


Von den 12 Karten ist jede durchschnittlich mit 22/54 Trumpf. [mm] 12*22/54=4\bruch{8}{9} [/mm] Trumpf hat man somit im Durchschnitt in der Hand.



>  Hallo Mathe-Experten, meine Schullaufbahn liegt schon sehr
> lang zurück, ich kann mich an die Prinzipien der
> Wahrscheinlichkeitsrechnung nicht mehr erinnern und wäre
> froh über eine Erklärung, wie das obige Problem gelöst
> werden kann.
>  
> War das so ein Fall eines Bernoulli-Experiments? Wenn ja,
> ist dann die Wahrscheinlichkeit für k Trumpf:
>  P(k) = [mm]\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k},[/mm]
>  wobei n
> = 12 und p = 22/54?
>  
> Und die durchschnittliche Anzahl ergibt sich dann aus
>  1 [mm]\cdot[/mm] P(1) + 2 [mm]\cdot[/mm] P(2) + … 12 [mm]\cdot[/mm] P(12)?
>  
> Vielen Dank für die Hilfe!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Ja, es liegt ein Bernoulli-Experiment vor, und das Ergebnis ist auch richtig. Wenn die Frage lautet: Wie groß ist die W., genau ... (oder mehr/weniger als ...) Trumpf zu erhalten, musst du solche Rechnungen anstellen. Für den Durchschnitt geht das viel einfacher (s.o.).




Bezug
                
Bezug
Wahrscheinlichkeit für Trumpf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Sa 18.06.2016
Autor: Lord_Snow

Aufgabe
Ja, es liegt ein Bernoulli-Experiment vor, und das Ergebnis ist auch richtig.

Vielen Dank für die rasche Auskunft, das geht tatsächlich viel einfacher so. Eine Frage dennoch dazu: Ich habe die Wahrscheinlichkeiten 1, 2, …, 12 Trumpf geteilt zu bekommen, separat berechnet und aufsummiert. Warum ergeben die 99.81%, nicht aber genau 100%?

Bezug
                        
Bezug
Wahrscheinlichkeit für Trumpf: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Sa 18.06.2016
Autor: fred97


> Ja, es liegt ein Bernoulli-Experiment vor, und das Ergebnis
> ist auch richtig.
>  Vielen Dank für die rasche Auskunft, das geht
> tatsächlich viel einfacher so. Eine Frage dennoch dazu:
> Ich habe die Wahrscheinlichkeiten 1, 2, …, 12 Trumpf
> geteilt zu bekommen, separat berechnet und aufsummiert.
> Warum ergeben die 99.81%, nicht aber genau 100%?

Wenn Du 12 Karten bekommst, so muss doch nicht zwingend eine Trumpfkarte darunter sein !

FRED


Bezug
                                
Bezug
Wahrscheinlichkeit für Trumpf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 So 19.06.2016
Autor: Lord_Snow

Richtig, wie dumm von mir! Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de