www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeiten ausrechne
Wahrscheinlichkeiten ausrechne < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten ausrechne: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Di 26.05.2009
Autor: NightmareVirus

Aufgabe
In einem Wahrscheinlichkeitsraum [mm] (\Omega, \mathcal{A} [/mm] , P) seien von den Ereignissen A,B,C folgende W'keiten bekannt:
(i) P(B) = [mm] \bruch{7}{20} [/mm]
(ii) [mm] P(C^c) [/mm] = [mm] \bruch{7}{10} [/mm]
(iii) P(A) = [mm] \bruch{3}{10} [/mm]
(iv) [mm] P(A^c \cap [/mm] C) [mm] \bruch{1}{4} [/mm]
(v) P(A [mm] \cap [/mm] B) = [mm] \bruch{1}{10} [/mm]
(vi) P(A [mm] \cap [/mm] B [mm] \cap [/mm] C) = [mm] \bruch{1}{20} [/mm]
(vii) P((A [mm] \cup [/mm] B) [mm] \cap [/mm] C) = [mm] \bruch{3}{20} [/mm]

Gesucht sind die W'keiten von:

a) A [mm] \cup [/mm] B
b) [mm] A^c \cup [/mm] C
c) A [mm] \cap [/mm] C
d) A [mm] \cap B^c \cap [/mm] C
e) B [mm] \cap [/mm] C
f) A [mm] \cup [/mm] B [mm] \cup [/mm] C

Hallo,
ich komme bei der e) nicht weiter. Drehe mich da irgendwie immer im Kreis.
Zunächst meine Lösungen für die anderen Aufgaben da man die Werte ja ggf brauchen kann:

a) P(A [mm] \cup [/mm] B) = [mm] \bruch{11}{20} [/mm]

b) [mm] P(A^c \cup [/mm] C) = [mm] \bruch{3}{4} [/mm]

c) P(A [mm] \cap [/mm] C) = [mm] \bruch{1}{20} [/mm]

d) P(A [mm] \cap B^c \cap [/mm] C) = 0


e) P(B [mm] \cap [/mm] C) = ???
Mein Ansatz: P(B [mm] \cap [/mm] C) = P(B) + P(C) - P(B [mm] \cup [/mm] C)
P(B [mm] \cup [/mm] C) bekomme ich aber ohne P(B [mm] \cap [/mm] C) nicht raus... auch die Umformung zu
P(B [mm] \cap [/mm] C) = P(C) - [mm] P(B^c \cap [/mm] C) = P(B) - [mm] P(C^c \cap [/mm] B) führt zu nichts.

f) Mit der Siebformel:
P(A [mm] \cup [/mm] B [mm] \cup [/mm] C) = P(A) + P(B) + P(C) - [mm] P(A\cap [/mm] B) - [mm] P(B\cap [/mm] C) - [mm] P(C\cap [/mm] A) + - [mm] P(A\cap B\cap [/mm] C)
hier kenne ich alles bist auf  P(B [mm] \cap [/mm] C) welches in teil e) bestimmt werden soll...



        
Bezug
Wahrscheinlichkeiten ausrechne: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Di 26.05.2009
Autor: kunzmaniac

P(B) = 7/2 kommt mir merkwürdig vor, wenn B aus der Sigma Algebra ist, also ein Ereignis, kann P(B) doch nicht größer 1 sein (Kolmogorov), wenn B nicht in der Sigma Algebra ist, kann es keine Wahrscheinlichkeit zugeordnet bekommen.

Bezug
                
Bezug
Wahrscheinlichkeiten ausrechne: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Di 26.05.2009
Autor: NightmareVirus

JA, habe mich vertippt es sind [mm] \bruch{7}{20} [/mm]

Bezug
        
Bezug
Wahrscheinlichkeiten ausrechne: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:11 Do 28.05.2009
Autor: NightmareVirus

Weiss wirklich niemand wie man e) berechnet? Das kann doch nicht!

Bezug
        
Bezug
Wahrscheinlichkeiten ausrechne: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Do 28.05.2009
Autor: ms2008de

Hallo,
ich hör zwar noch keine Stochastik an der Uni, aber ich glaube, ich kann dir dennoch weiterhelfen zur e):
Du weißt, das P(A [mm] \cap [/mm] C) = [mm] \bruch{1}{20} [/mm] und P(A [mm] \cap [/mm] B [mm] \cap [/mm] C) is ebenfalls [mm] \bruch{1}{20}, [/mm] also is (A [mm] \cap [/mm] C) = (A [mm] \cap [/mm] B [mm] \cap [/mm] C), besser gesagt (A [mm] \backslash [/mm] B) [mm] \cap [/mm] C = [mm] \emptyset [/mm]
und aus P((A [mm] \cup [/mm] B) [mm] \cap [/mm] C) = [mm] \bruch{3}{20}, [/mm] sollte nun klar sein, dass P (B [mm] \cap [/mm] C) = [mm] \bruch{3}{20} [/mm] sein müsste.

Viele Grüße

Bezug
                
Bezug
Wahrscheinlichkeiten ausrechne: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 Do 28.05.2009
Autor: abakus

Hallo,
wieso verwendest du sofort  Formeln?
Mit einem geeigneten Diagramm und etwas Überlegung kannst du den einzelnen Fällen schnell ihre Wahrscheinlichkeiten zuordnen.
Nachfolgende Abbildung zeigt den Stand nach Auswertung von vi), v) und vii) in Verbindung mit i).
[Dateianhang nicht öffentlich]

Gruß Abakus





Dateianhänge:
Anhang Nr. 1 (Typ: GIF) [nicht öffentlich]
Bezug
                        
Bezug
Wahrscheinlichkeiten ausrechne: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 Do 28.05.2009
Autor: ms2008de

Naja, solange der Ansatz gestimmt hat, egal ob mit oder ohne Diagramme.
Viele Wege führen bekanntlich nach Rom

Bezug
                                
Bezug
Wahrscheinlichkeiten ausrechne: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:32 Fr 29.05.2009
Autor: abakus


> Naja, solange der Ansatz gestimmt hat, egal ob mit oder
> ohne Diagramme. Viele Wege führen bekanntlich nach Rom

Sicher,
aber wenn du nach und nach weitere Teilflächen mit konkreten Werten belegen kannst, dann "siehst" du bestimmt die noch fehlenden Lösungen zu den Teilaufgaben, zu denen du durch Formeln allein nur schwer Zugang findest.
Eine geeignete Veranschaulichung ist nichts Unwissenschaftliches.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de