www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Wahrscheinlichkeitsberechnung
Wahrscheinlichkeitsberechnung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsberechnung: Idee
Status: (Frage) beantwortet Status 
Datum: 18:23 So 31.10.2010
Autor: Mr.PiM

Aufgabe
Max gewinnt mit der Wahrscheinlichkeit p=2/3 beim Squash gegen Karl.
a) Mit welcher Wahrscheinlichkeit gewinnt Max genau sechs von zehn Spielen?
b) Mit welcher Wahrscheinlichkeit gewinnt er mindestens sechs von zehn Spielen?

Hi zusammen!
zu a)
n= 10
k=6
p=2/3
Auch hier habe ich das Problem, dass ich nicht weiß, welche Formel ich zur Berechnung nehmen soll.
Mit P(X=k)=(n über [mm] k)*p^k*(1-p)^{n-k} [/mm] funktioniert es nicht - mein Taschenrechner zeigt da ein anderes Ergebnis an.
Es müssen immerhin 22,7% rauskommen, aber über diese Formel geht es, wie bereits gesagt, nicht.

zu b)
n=10
p=2/3
k=6;7;8;9;10
Hier funktioniert es nicht, dass ich mit der Formel P(X=k)=(n über [mm] k)*p^k*(1-p)^{n-k} [/mm] die Einzelnen Teilwahrscheinlichkeiten ausrechne und dann addieren. Im Prinzip brauche ich also die gleiche Formel wie oben - aber welche ist das?

Schonmal Danke!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.uni-protokolle.de/foren/viewt/273220,0.html

        
Bezug
Wahrscheinlichkeitsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 So 31.10.2010
Autor: abakus


> Max gewinnt mit der Wahrscheinlichkeit p=2/3 beim Squash
> gegen Karl.
>  a) Mit welcher Wahrscheinlichkeit gewinnt Max genau sechs
> von zehn Spielen?
>  b) Mit welcher Wahrscheinlichkeit gewinnt er mindestens
> sechs von zehn Spielen?
>  Hi zusammen!
>  zu a)
>  n= 10
> k=6
> p=2/3
>  Auch hier habe ich das Problem, dass ich nicht weiß,
> welche Formel ich zur Berechnung nehmen soll.
>  Mit P(X=k)=(n über [mm]k)*p^k*(1-p)^{n-k}[/mm] funktioniert es
> nicht - mein Taschenrechner zeigt da ein anderes Ergebnis
> an.
>  Es müssen immerhin 22,7% rauskommen, aber über diese
> Formel geht es, wie bereits gesagt, nicht.

Hallo,
es kommt MIT DEINER FORMEL tatsächlich 22,7% heraus.
Ich vermute deinen Fehler in fehlenden Klammern.
Es muss nach dem Binomialkoeffizienten unbedingt [mm] (2:3)^6*(1:3)^4 [/mm] heißen und nicht etwa nur
[mm] 2:3^6*1:3^4. [/mm]
Gruß Abakus

>  
> zu b)
>  n=10
>  p=2/3
>  k=6;7;8;9;10
>  Hier funktioniert es nicht, dass ich mit der Formel
> P(X=k)=(n über [mm]k)*p^k*(1-p)^{n-k}[/mm] die Einzelnen
> Teilwahrscheinlichkeiten ausrechne und dann addieren. Im
> Prinzip brauche ich also die gleiche Formel wie oben - aber
> welche ist das?
>  
> Schonmal Danke!
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  http://www.uni-protokolle.de/foren/viewt/273220,0.html


Bezug
                
Bezug
Wahrscheinlichkeitsberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 So 31.10.2010
Autor: Mr.PiM

Ich glaub es nicht.
Das darf doch nicht möglich sein.
Ich sitze hier und verbrauche so viele Stunden, nur weil ich vergessen habe, diese Klammern mit einzugeben.
Vielen Dank sonst hätte ich wohl noch bis spät in die Nacht daran gesessen! =D

mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de