www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeitsraum
Wahrscheinlichkeitsraum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsraum: 3 dimensionale Zufallsvariable
Status: (Frage) beantwortet Status 
Datum: 14:50 Di 08.01.2008
Autor: neo-killer

Aufgabe
Seien A = (0 , 1 [mm] )^3 [/mm] , B ={(0,0,0),(0,1,1),(1,0,1),(1,1,0)} , C= A-B und X [mm] =(X_1 ,X_2 ,X_3) [/mm] eine 3 - Dimensionale Zufallsvariable auf einem Wahrscheinlichkeitsraum (omega ,sigma, P) mit Werten  in A und

                (    3/16 , fals [mm] x\in [/mm] B,
P(X=x)=         (
                (    1/16 ,fals [mm] x\in [/mm] C.


  
Außerdem sei I={1,2,3}

(a)Untersuchen Sie, ob [mm] (X_i)_i_\in_I [/mm] paarweise unabhängig ist.
(b)Untersuchen Sie, ob [mm] (X_i)_i_\in_I [/mm] unabhängig ist.

Ich weiss leider garnicht wie ich an diese aufgabe angehen soll, ich versteh nicht mal die erste zeihle was mit dem [mm] {0,1}^3 [/mm] und so gemeint is,
währe sehr froh wenn jemand mit mir die aufgabe stück für stück durchgehen würde weil ich das endlich mal verstehen will.


        
Bezug
Wahrscheinlichkeitsraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Di 08.01.2008
Autor: luis52

Moin  neo-killer,

leider muss ich mir hier einige Informationen zusammensuchen. Ich
*vermute*, dass [mm] $\Omega=A$ [/mm] ist, [mm] $A=(0,1)^3$ [/mm] ist eine verkuerzte
Schreibweise fuer die Menge [mm] $A=\{(x_1,x_2,x_3)\mid x_i=0\mbox{ oder }1\}$, [/mm] die also acht Elemente hat.

Ich *vermute* ferner, dass [mm] $X\colon\Omega\to\IR^3$ [/mm] durch
[mm] $X(\omega)=\omega$ [/mm] definiert ist.  Der Aufgabestellung entnehme ich
danach $P(X=(0,1,1))=3/16$ und $P(X=(0,0,1))=1/16$.

Die Komponenten [mm] $X_i$ [/mm] von $X$ sind ebenfalls Funktionen, genauer
[mm] $X_i\colon\Omega\to\IR$ [/mm] mit [mm] $X_i((x_1,x_2,x_3))=x_i$. [/mm] Jetzt musst du die
Verteilung von [mm] $X_i$ [/mm] bestimmen. Da [mm] $X_i$ [/mm] nur die Werte 0 oder 1 annimmt,
handelt es sich um eine Bernoulli-verteilte Zufallsvariable mit
[mm] $P(X_i=0)=1-p_i$ [/mm] und [mm] $P(X_i=1)=p_i$. [/mm]
*Ich* errechne [mm] $P(X_1=0)=1/2$, $P(X_2=0)=1/2$ [/mm] und [mm] $P(X_3=0)=1/2$. [/mm]

Jetzt musst du noch Verteilungen von [mm] $(X_i,X_j)\colon\Omega\to\IR$ [/mm] mit
[mm] $(X_i,X_j)((x_1,x_2,x_3))=(x_i,x_j)$, [/mm] $i<j$, bestimmen. Fuer [mm] $(X_1,X_2)$ [/mm]
erhalte ich [mm] $P((X_1,X_2)=(0,0))=4/16$, $P((X_1,X_2)=(1,0))=4/16$, [/mm]
[mm] $P((X_1,X_2)=(0,1))=4/16$ [/mm] und [mm] $P((X_1 ,X_2)=(0,1))=4/16$, [/mm] usw.

Fuer paarweise Unabhaengigkeit musst du ueberpruefen
[mm] $P((X_i,X_j)=(x_r,x_s))=P(X_i=x_r)P(X_j=x_s)$ [/mm] fuer alle $r,s$ und fuer
die Unabhaengigkeit der [mm] $X_1,X_2,X_3$: [/mm]
[mm] $P((X_1,X_2,X_3)=(x_r,x_s,x_t))=$P(X_1=x_r)P(X_2=x_s)P(X_3=x_t)$. [/mm]

Frohes Schaffen!

vg Luis
                                

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de