www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeitsraum
Wahrscheinlichkeitsraum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsraum: diskret oder kontinuierlich?
Status: (Frage) beantwortet Status 
Datum: 14:33 Sa 14.02.2009
Autor: Kostja

Aufgabe
Es seien [mm] \alpha [/mm]  die Menge der reellen Zahlen, B die Menge aller positiven reellen Zahlen, F={{}, [mm] \alpha [/mm] ,B, [mm] \alpha [/mm] außer B} und P:-->[0,1] eine Abbildung mit P(B)=0,1 und [mm] P(\alpha [/mm] außer B)=0,9.
a) Ist [mm] (\alpha [/mm] ,F,P) ein diskreter Wahrscheinlichkeitsraum?
b) Ist [mm] (\alpha [/mm] ,F,P) ein kontinuierlicher Wahrscheinlichkeitsraum?
c) Es sei nun   [mm] \alpha [/mm] ein endliche Teilmenge der reellen Zahlen. Wir definieren für jede Teilmenge A von  [mm] \alpha [/mm]  den Wert P(A)=|A|/| [mm] \alpha| [/mm]
Zeigen Sie, dass ( [mm] \alpha,F,P) [/mm] ein diskreter Wahrscheinlichkeitsraum ist.

Hallo an alle,
Ich bin seit einigen Tagen dabei die Aufgabe zu lösen, leider ohne Erfolg.
Was ich nicht verstehe ist die Definition von kontinuierlichen W-Raum.
Die Lösung für a) wäre meiner Meinung nach, handelt es sich nicht um einen diskreten W-Raum, weil [mm] \alpha [/mm] nicht zu den endlichen oder abzählbar unendlichen Mengen gehört.
Und bei c) würde ich auf einen diskrete W-Raum tippen, aber wie soll ich das zeigen?

ich wäre Euch sehr dankbar, wenn Ihr mir bei b) und c) helfen würdet.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeitsraum: Ideen
Status: (Antwort) fertig Status 
Datum: 12:19 Di 17.02.2009
Autor: generation...x

a) Stimmt, denn sonst müsste [mm] \alpha [/mm] ja abzählbar sein.

b) Kannst du die Definition für kontinuierlichen WR hier angeben? Dann kann man sich das noch mal anschauen.

c) Ist diskret, aber du hast ein anderes F als bei a), nämlich die Menge aller Teilmengen von [mm] \alpha. [/mm] Dass [mm] \alpha [/mm] abzählbar ist, ist ja schon gegeben, jetzt musst du noch zeigen, das du überhaupt einen Wahrscheinlichkeitsraum vor dir hast.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de