www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Sa 07.03.2015
Autor: dojokli

Ein Langzeitversuch ergab beim Werfen von Reißnägeln folgende Verteilung:
landet auf der Seite - 35%
landet auf dem Kopf - 65%
Zwei Reißnägel werden geworfen. Wie hoch ist die Wahrscheinlichkeit für das Ergebnis "zweimal Kopf"?
Wie hoch ist die Wahrscheinlichkeit, dass genau einer auf die Seite fällt?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Sa 07.03.2015
Autor: notinX

Hallo,

> Ein Langzeitversuch ergab beim Werfen von Reißnägeln
> folgende Verteilung:
>  landet auf der Seite - 35%
>  landet auf dem Kopf - 65%
>  Zwei Reißnägel werden geworfen. Wie hoch ist die
> Wahrscheinlichkeit für das Ergebnis "zweimal Kopf"?

beim ersten Wurf beträgt die Wahrscheinlichkeit für "Kopf" ja 65% oder 0,65. Beim zweiten Wurf genauso. Die Gesamtwahrscheinlichkeit, dass beide Ereignisse hintereinander eintreffen, ist das Produkt beider Einzelwahrscheinlichkeiten.

>  Wie hoch ist die Wahrscheinlichkeit, dass genau einer auf
> die Seite fällt?

Zwei Würfe sind noch recht überschaubar, das kann man ohne größere mathematische Anstrengungen bestimmen. Es gibt
insgesamt zwei Ereignisse und zwei Würfe. Also insgesamt vier mögliche Ausgänge des Experiments. Schreib Dir die vier potentiell möglichen Ausgänge der beiden Würfe auf und zähle wieviele davon dem Ergebnis "einmal Kopf" entsprechen. Das geteilt durch vier ergibt die Wahrscheinlichkeit dafür, dass einer auf die Seite fällt.

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß,

notinX

Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Sa 07.03.2015
Autor: dojokli

die Aufgabe geht folgendermaßen weiter:
Die beiden Reißnägel werden für ein Glücksspiel verwendet.
Gewinnplan:
zweimal Seite - 5,00€
einmal Kopf einmal Seite - 1,00€
zweimal Kopf - kein Gewinn
Einsatz  pro Spiel - 1,00€
Berechnen Sie den Erwartungswert.
Was würde das für den Betreiber bedeuten?



Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Sa 07.03.2015
Autor: chrisno

Es fehlt irgendein Beitrag von Dir.

Bezug
                                
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Sa 07.03.2015
Autor: dojokli

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                                        
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Sa 07.03.2015
Autor: notinX


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

Mit einem Beitrag von Dir meinte chrisno, einen Beitrag zur Lösung der Aufgabe, oder wenigstens eine exakte Beschreibung, was Dir Probleme bereitet.

Gruß,

notinX

Bezug
                                        
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 Sa 07.03.2015
Autor: Al-Chwarizmi

Hallo dojokli,

chrisno wollte dich darauf aufmerksam machen, dass in
diesem Forum hier nicht einfach Aufgaben gelöst werden,
die einer mal einfach so reinstellt.

Wir erwarten immer, dass der Fragesteller nicht nur eine
Aufgabe reinstellt, mit der er Schwierigkeiten hat. Nein,
wir wollen auch sehen, womit genau der Fragende ein
Problem hat.

Gib also bitte zunächst einmal an, was du dir selber zu
der Aufgabe schon überlegt hast !  Auch wenn das eben
noch nicht erfolgreiche Schritte zur Lösung hin waren:
wir wollen trotzdem sehen, dass du dir wenigstens ein
paar eigene Gedanken gemacht hast, und welche !

Wenn du das mal tust, dann hilft dir bestimmt gerne
jemand weiter.

LG  ,   Al-Chwarizmi



Bezug
                                                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 So 08.03.2015
Autor: dojokli

Ich habe mit den möglichen Wahrscheinlichkeiten einen Erwartungswert von 0,00675€ rausbekommen. Aber was bedeutet das für den Gewinnspielbetreiber?

Bezug
                                                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 So 08.03.2015
Autor: M.Rex

Hallo

> Ich habe mit den möglichen Wahrscheinlichkeiten einen
> Erwartungswert von 0,00675€ rausbekommen.

 Zeige mal deine Rechnung, ich komme auf einen anderen Wert.

> Aber was bedeutet das für den Gewinnspielbetreiber?

Hast du aus Sicht des Betreibers gerechnet? Dann erwartet er pro Spiel "auf lange Sicht" einen Gewinn von eben diesem Wert pro Spiel.

Marius

Bezug
                                                                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 So 08.03.2015
Autor: dojokli

Kopf Kopf - 42,25%
Kopf Stiel - 45,5%
Stiel Kopf - 45,5%
Stiel Stiel - 12,25%

Erwartungswert: 0,4225 * (-1) + 0,1225 * 4 = 0,0675€ rund 7 Cent
Was heißt das für den Betreiber?
7 Cent pro Spiel im Durchschnitt Gewinn? Oder?

Bezug
                                                                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 So 08.03.2015
Autor: M.Rex

Hallo

> Kopf Kopf - 42,25%
> Kopf Stiel - 45,5%
> Stiel Kopf - 45,5%
> Stiel Stiel - 12,25%

Wie soll das denn gehen, diese Prozentwerte ergeben doch mehr als 100%?

Außerdem hast du noch nicht klassifiziert, bei welchem der Vier Ereignisse welcher Gewinn eintritt.

Marius

Bezug
                                                                                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 So 08.03.2015
Autor: dojokli

Kopf-Stiel und Stiel Kopf ist das gleiche
Also 42,25% +45,5% + 12,25% = 100%
Gewinnplan war:
zweimal Stiel - 5,00€ Gewinn
Stiel und Kopf - 1,-€ Gewinn
zweimal Kopf - kein Gewinn
Einsatz pro Wurf - 1,-€

E = 0,4225 * (-1) + 0,455 * 0 + 0,1225 * 4 = 0,0675€
Wertung für den Spielbetreiber?
wenig lohnend????



Bezug
                                                                                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 So 08.03.2015
Autor: M.Rex

Hallo


> Kopf-Stiel und Stiel Kopf ist das gleiche
> Also 42,25% +45,5% + 12,25% = 100%
> Gewinnplan war:
> zweimal Stiel - 5,00€ Gewinn
> Stiel und Kopf - 1,-€ Gewinn
> zweimal Kopf - kein Gewinn
> Einsatz pro Wurf - 1,-€

Das stimmt so nicht, du darfst doch nicht einfach so addieren.

Du gewinnst [mm] $X_{1}=5$€ [/mm] bei "Doppelstiel", das geschieht mit  [mm] p_{1}=0,35\cdot0,35=\frac{49}{400} [/mm]

Du gewinnst [mm] $X_{2}=1$€ [/mm] bei "Kopf-Stiel" (Reihenfolge egal, das passiert mit [mm] p_{2}=2\cdot0,65\cdot0,35=\frac{91}{200} [/mm]

Bei "Doppelkopf" "gewinnst" du [mm] $X_{3}=-1$€, [/mm] das passiert mit [mm] p_{3}=0,65^{2}=\frac{169}{400} [/mm]

>

> E = 0,4225 * (-1) + 0,455 * 0 + 0,1225 * 4 = 0,0675€

Der Erwartungswert ist also aus deiner Spielersicht.

[mm] E(X)=5\cdot\frac{49}{400}+1\cdot\frac{91}{200}-1\cdot\frac{169}{400}=\frac{129}{200}=0,645 [/mm]


> Wertung für den Spielbetreiber?
> wenig lohnend????

Das stimmt, auch wenn dein Wert falsch war

Marius

Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 So 08.03.2015
Autor: M.Rex

Hallo

> die Aufgabe geht folgendermaßen weiter:
> Die beiden Reißnägel werden für ein Glücksspiel
> verwendet.
> Gewinnplan:
> zweimal Seite - 5,00€
> einmal Kopf einmal Seite - 1,00€
> zweimal Kopf - kein Gewinn
> Einsatz pro Spiel - 1,00€
> Berechnen Sie den Erwartungswert.

Und? Hier steht doch schon die Aufgabe.
Mach dir mal eine Tabelle mit den Werten, die die Zufallsgröße "Gewinn des Spielers" annehmen (es sind drei) kann und schreibe für jede der Stufen die Wahrscheinlichkeit dazu.
Danach kannst du dann mit der üblichen Formel den Erwartungswert berechnen.

> Was würde das für den Betreiber bedeuten?

Ein Tipp: Ein faires Spiel hat den Erwartungswert Null. Ist der Erwartungswert nicht Null, gewinnt eine der Parteien "auf lange Sicht" Geld.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de