www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Di 17.10.2006
Autor: LaraBln

Aufgabe
Herberts Bus fährt planmäßig um 7 Uhr ab: in 90% aller Fälle hat der Bus aber 5 Minuten Verspätung und fährt daher erst um 7.05 Uhr ab. Ansonsten ist der Bus pünktlich (10%) Herbert geht um 7 Uhr von zu Hause los und benötigt 4 Minuten bis zur Haltestelle.
Wie groß ist die Wahrscheinlichkeit, dass Herbert an 5 Tagen den Bus
a) an keinem Tag verpasst
b) an genau drei Tagen Verpasst
c) an genau drei aufeinanderfolgenden Tagen nicht einmal verpasst?
Stellen Sie anschließend ein passendes Baumdiagramm dar!


Hallo ihr Lieben
oh mann ...ich hatte Mathe jetzt 2 lange Wochen nicht mehr ( durch unsere Herbstferien) und ich weiss nicht was ich jetzt mit dieser Aufgabe anfangen sol ;-( hilfe die Klausur naht auch bestimmt...
vielen dank
Lara

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Di 17.10.2006
Autor: VNV_Tommy

Hallo LaraBln!

> Herberts Bus fährt planmäßig um 7 Uhr ab: in 90% aller
> Fälle hat der Bus aber 5 Minuten Verspätung und fährt daher
> erst um 7.05 Uhr ab. Ansonsten ist der Bus pünktlich (10%)
> Herbert geht um 7 Uhr von zu Hause los und benötigt 4
> Minuten bis zur Haltestelle.

Es seien folgende Ereignisse bekannt:
A: Herbert bekommt den Bus.
B: Herbert verpasst den Bus.

Die Wahrscheinlichkeit, daß Herbert an einem Tag den Bus kriegt liegt bei 90% (bzw. P(A)=0,9) und die, daß er ihn verpasst liegt bei 10% (bzw. P(B)=0,1).

>  Wie groß ist die Wahrscheinlichkeit, dass Herbert an 5
> Tagen den Bus
>  a) an keinem Tag verpasst

Es sei E folgendes Ereignis: "Herber verpasst an keinem der 5 Tage den Bus"

Es ist die Wahrscheinlichkeit für das Ereignis gesucht, daß Herbert den Bus am 1. Tag und 2.Tag und 3.Tag und 4.Tag und 5.Tag nicht verpasst (also die Wahrscheinlichkeit, daß 5 mal hintereinander Ereignis A eintriff).

Somit ist [mm]P(E)=P(A)*P(A)*P(A)*P(A)*P(A)=0,9*0,9*0,9*0,9*0,9=0,9^{5}=0,59049\hat=59,049 Prozent[/mm]

>  b) an genau drei Tagen Verpasst

Es sei E folgendes Ereignis: "Herbert verpasst an genau 3 Tagen den Bus"

Hierbei gibt es mehrere mögliche Kombinationen. Herbert könnte z.B. den Bus an den ersten 3 Tagen verpassen, aber dafür dann an den folgenden 2 Tagen rechtzeitig erreichen. Er könnte aber auch am 1., 3. und 5. tag den Bus verpassen und an allen anderen Tagen rechtzeitig an der Haltestelle sein. Es gibt demzufolge mehrere Ereignispfade in deinem Ereignisbaum. Genau sind es [mm] \vektor{5 \\ 3}=\bruch{5!}{3!*(5-3)!}=\bruch{5!}{3!*2!}=10 [/mm] Kombinationen. Alle Pfade haben jedoch die selbe Wahrscheinlichkeit von
[mm]P(A)*P(A)*P(B)*P(B)*P(B)=0,9*0,9*0,1*0,1*0,1=0,9^{2}*0,1^{3}=0,00081[/mm]

Da es jedoch 10 Kombinationen gibt, ergibt sich P(E) nun zu:
[mm]P(E)=10*0,00081=0,0081\hat=0,81 Prozent[/mm]

>  c) an genau drei aufeinanderfolgenden Tagen nicht einmal
> verpasst?

Es sei E folgendes Ereignis: "Herbert verpasst den Bus an 3 aufeinanderfolgenden Tagen nicht"

Für 3 aufeinaderfolgende Tage gibt es bei 5 Tagen nur 3 Kombinationen (Tage 1,2 und 3; Tage 2, 3 und 4; Tage 3, 4 und 5).

Die Wahrscheinlichkeit an 3 Tagen hintereinander den Bus zu erreichen beträgt
[mm]P(A)*P(A)*P(A)*P(B)*P(B)=0,9*0,9*0,9*0,1*0,1=0,9^{3}*0,1^{2}=0,00729[/mm]

Da es aber hier 3 Mögliche Kombinationen gab ergibt sich die Wahrscheinlichkeit für Ereignis E zu:
[mm]P(E)=3*0,00729=0,02187\hat=2,187 Prozent[/mm]

>  Stellen Sie anschließend ein passendes Baumdiagramm dar!

Das sollte kein Problem darstellen. Ist nur ein wenig Fleissarbeit.
  

>
> Hallo ihr Lieben
>  oh mann ...ich hatte Mathe jetzt 2 lange Wochen nicht mehr
> ( durch unsere Herbstferien) und ich weiss nicht was ich
> jetzt mit dieser Aufgabe anfangen sol ;-( hilfe die Klausur
> naht auch bestimmt...
>  vielen dank
> Lara
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Gruß,
Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de