www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Di 26.02.2008
Autor: erdnussflip

Aufgabe
Vier Maschinen M1, M2, M3, M4.
Produktionsmenge pro Zeiteinheit:
M1: 0,5
M2: 0,3
M3: 0,1
M4: 0,1

Fehlerquote der Maschinen:
M1: 0,04
M2: 0,06
M3: 0,01
M4: 0,1

Berechnen Sie die Wahrscheinlichkeit, dass die Wareneinheiten von M1, M2, M3, M4 produziert wurden!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Mein Lösungsvorgang ist wie folgt.

M1: 0,5    0,96            [mm] M1\cap{D} [/mm] = 0,48
           0,04            [mm] M1\cap\overline{D} [/mm] = 0,02
M2: 0,3    0,94            [mm] M2\cap{D} [/mm] = 0,282
           0,06            [mm] M2\cap\overline{D} [/mm] = 0,018
M3: 0,1    0,99            [mm] M3\cap{D} [/mm] = 0,099
           0,01            [mm] M3\cap\overline{D} [/mm] = 0,001
M4: 0,1    0,90            [mm] M4\cap{D} [/mm] = 0,09
           0,10            [mm] M3\cap\overline{D} [/mm] = 0,01

Wahrscheinlichkeit, dass die Wareneinheiten von...
M1 produziert wurden: 0,50
M2 produziert wurden: 0,30
M3 produziert wurden: 0,10
M4 produziert wurden: 0,10

Meine Frage ist ob ihr der Ansicht seit, dass dieser Lösungsweg bzw. die Lösungen richtig sind, oder ob ihr da anderer Meinung seid?!

Für Hilfestellung bin ich sehr dankbar!!

        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Di 26.02.2008
Autor: subclasser

Hallo, erdnussflip!

Meiner Meinung nach ist deine Lösung nicht ganz richtig. Die Aufgabe ist wohl so gemeint, dass eine Wareneinheit nur produziert wurde, falls kein Fehler auftrat. Dann ist die Aufgabe ein typischer Fall für die Bayessche Formel. Für die Wahrscheinlichkeit, dass eine Ware TATSÄCHLICH in Werk 1 produziert wurde gilt dann:
[mm] $$P(M_1|D^C) [/mm] = [mm] \frac{P(D^C|M_1) * P(M_1)}{\sum_{i=1}^{4} P(D^C|M_i) * P(M_i)}$$ [/mm]
wobei [mm] D^C [/mm] gleichbedeutend mit [mm] \overline{D} [/mm] ist.
Für die anderen Wahrscheinlichkeiten kannst du analog vorgehen.

Gruß!


Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Di 26.02.2008
Autor: erdnussflip

Danke für den Tip! Die Formel hatte ich bisher noch nicht in der Vorlesung, aber wird dann evtl. demnächst kommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de