www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wahrscheinlichkeitsvektor
Wahrscheinlichkeitsvektor < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:57 Do 08.10.2020
Autor: inkeddude

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo an alle :-)
Ich habe in meinem Skript einen (für mich) interessanten Satz entdeckt, der leider nicht bewiesen wurde. Die Aussage des Satzes habe ich zwar verstanden, aber mir war nicht klar, wie man auf diese Aussage kommt. Also habe ich versucht, den Satz selber zu beweisen.
Ich denke, dass mein Beweis ganz okay ist. Aber ich bin mir nicht ganz sicher, ob ich doch nicht was übersehen habe. Daher würde ich mich freuen, wenn mir jemand ein Feedback dazu geben könnte.
Davor habe ich aber noch kurz eine Frage zur Definition eines Wahrscheinlichkeitsvektors.

  Wahrscheinlichkeitsvektoren

Sei $\Omega$ eine abzählbare Menge.

Ein Vektor $p:= \left ( p_{\omega} \right )_{\omega \in \Omega}$ heißt Wahrscheinlichkeitsvektor über $\Omega$, falls  $p_{\omega} \ge 0\; \forall \omega \in \Omega$ und $\sum\limits_{\omega \in \Omega} p_{\omega} = 1$.

Diese Definition finde ich ein bisschen unglücklich. Diese $p_{\omega}$ sind doch erst einmal nur beliebige Objekte, über die man zunächst nichts weiß. Natürlich wird dann  durch die nachfolgenden Eigenschaften klar, dass die $p_{\omega}$ Zahlen sein müssen. Aber sollen das reelle Zahlen sein oder rationale Zahlen?  Ich nehme an, das sind reelle Zahlen.


Satz

Sei $\Omega$ eine abzählbare Menge.

Man definiere die Mengen

$W_{\vert \Omega \vert} := \left \{ (p_{\omega})_{\omega \in \Omega} \in \mathbb{R}^{\vert \Omega \vert}\; \vert \; p_{\omega} \ge 0 \; \forall \omega \in \Omega\; \text{und}} \; \sum\limits_{\omega \in \Omega} p_{\omega} = 1 \right \}$ die  Menge der  Wahrscheinlichkeitsvektoren über $\Omega$.

und

$P_{\Omega, \mathcal{P}(\Omega)} := \{P: \mathcal{P}(\Omega) \rightarrow [0, 1] \; \vert \; P\; \text{ist ein Wahrscheinlichkeitsmaß auf dem Messraum}\; (\Omega, \mathcal{P}(\Omega))  \}$ die Menge aller Wahrscheinlichkeitsmaße $P$ auf dem Messraum $(\Omega, \mathcal{P}(\Omega))$.


Dann existiert eine bijetive Abbildung  $\Phi_{\Omega}: P_{\Omega, \mathcal{P}(\Omega)} \rightarrow W_{\vert \Omega \vert}, P \mapsto \Phi_{\Omega}(P)$.


Beweis

"$\Rightarrow$"

Sei $S \in P_{\Omega, \mathcal{P}(\Omega)}$.

Damit basteln wir uns den Vektor $S_{\Omega} := (S(\{ \omega \}))_{\omega \in \Omega} \in \mathbb{R}^{\Omega}$.

$S_{\Omega}$ ist sogar ein Wahrscheinlichkeitsvektor über $\Omega$, denn:

(i)  Es gilt $S(\{ \omega \}) \ge 0$ für alle $\omega \in \Omega$, da $S$ ein W- Maß auf $(\Omega, \mathcal{P}(\Omega))$ ist.

(ii) $1 = S(\Omega) = S \left ( \bigcup\limits_{\omega \in \Omega} \{ \omega \} \right)  = \sum\limits_{\omega \in \Omega} S(\{ \omega \})$, da $S$ ein W- Maß auf $(\Omega, \mathcal{P}(\Omega))$ ist.


Der Wahrscheinlichkeitsvektor $S_{\Omega}$ über $\Omega$ ist eindeutig durch $S$ bestimmt.

Warum ? Angenommen, es existiert ein $S \neq Q \in P_{\Omega, \mathcal{P}(\Omega)}$ mit $S_{\Omega} = Q_{\Omega}$.

Dann folgt sofort $S(\{ \omega \}) = Q(\{ \omega \})\; \forall \omega \in \Omega$ (*) und damit auch für alle $A \in \mathcal{P}(\Omega)$:

$S(A) = S \left ( \bigcup\limits_{\omega \in A} \{  \omega \} \right ) = \sum\limits_{\omega \in \Omega} S(\{ \omega \}) \overset{(\*)}{\underset{\text{}}{=}}  \sum\limits_{\omega \in \Omega} Q(\{ \omega \})  = Q \left ( \bigcup\limits_{\omega \in A} \{  \omega \} \right ) = Q(A)$.

Damit gilt dann $S = Q$, was ein Widerspruch zur Annahme ist, dass $Q \neq S$.

Also definiert jedes $T \in P_{\Omega, \mathcal{P}(\Omega)}$ eindeutig einen Wahrscheinlichkeitsvektor $T_{\Omega}$ über $\Omega$.


"$\Leftarrow$"  

Sei $p = (p_{\omega})_{\omega \in \Omega} \in W_{\vert \Omega \vert}$.

Betrachte nun die Abbildung $P: \mathcal{P}(\Omega) \rightarrow [0, 1], A \mapsto P(A) := \sum\limits_{\omega \in A} p_{\omega}$. $P$ ist ein Wahrscheinlichkeitsmaß auf dem Messraum $(\mathcal{P}(\Omega), \Omega)$. Denn:

1) Es gilt $P(A) \ge 0$, da $p_{\omega} \ge 0\; \forall \omega \in \Omega$ und somit auch $P(A) = \sum\limits_{\omega \in A} p_{\omega} \ge 0$.

2) Es gilt $P(\Omega) = 1$, da $(p_{\omega})_{\omega \in \Omega}$ ein Wahrscheinlichkeitsvektor über $\Omega$ ist und somit $P(\Omega) = \sum\limits_{\omega \in \Omega} p_{\omega} = 1$  gilt.

3) Es gilt $P \left (  \bigcup\limits_{j \in \mathbb{N}} A_{j} \right )  = \sum\limits_{\omega \in  \bigcup\limits_{j \in \mathbb{N}} A_{j}} p_{\omega} = \sum\limits_{j \in \mathbb{N}} \sum\limits_{\omega \in A_{j}} p_{\omega} = \sum\limits_{j \in \mathbb{N}} P(A_{j})$ für jede Folge paarweise unvereinbarer  Ereignisse $A_{1}, A_{2}, \ldots \in \mathcal{P}(\Omega)$.

Das W-Map $P$ auf $(\mathcal{P}(\Omega), \Omega)$ ist eindeutig durch den W- Vektor $p$ bestimmt, denn:

Angenommen, das durch ein $p \neq q \in W_{\vert \Omega \vert}$ bestimmte W-Maß $Q: \mathcal{P}(\Omega) \rightarrow [0, 1], A \mapsto Q(A) := \sum\limits_{\omega \in A} q_{\omega}$ auf $(\mathcal{P}(\Omega), \Omega)$ ist gleich $P$.

Dann gilt $q_{\omega} = Q(\{ \omega \}) = P(\{ \omega \}) = p_{\omega}$ für alle $\omega \in \Omega$.

Damit gilt $p = q$, was ein Widerspruch zur Annahme ist, dass $p \neq q$ ist.

Also definiert jedes $t \in W_{\vert \Omega \vert}$ ein Wahrscheinlichkeitsmaß $T \in P_{\Omega, \mathcal{P}(\Omega)}$.


Ist der Beweis so in Ordnung? Freue mich auf ein Feedback :-)

Grüße, Kevin


        
Bezug
Wahrscheinlichkeitsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Fr 09.10.2020
Autor: Gonozal_IX

Hiho,

> Ein Vektor [mm]p:= \left ( p_{\omega} \right )_{\omega \in \Omega}[/mm]
> heißt Wahrscheinlichkeitsvektor über [mm]\Omega[/mm], falls  
> [mm]p_{\omega} \ge 0\; \forall \omega \in \Omega[/mm] und
> [mm]\sum\limits_{\omega \in \Omega} p_{\omega} = 1[/mm].
>  
> Diese Definition finde ich ein bisschen unglücklich. Diese
> [mm]p_{\omega}[/mm] sind doch erst einmal nur beliebige Objekte,

Nö, jedes [mm] $p_\omega$ [/mm] ist eine nichtnegative reelle Zahl.
Steht doch auch in der Definition:
$ [mm] p_{\omega} \ge 0\; \forall \omega \in \Omega [/mm] $


> 3) Es gilt [mm]P \left ( \bigcup\limits_{j \in \mathbb{N}} A_{j} \right ) = \sum\limits_{\omega \in \bigcup\limits_{j \in \mathbb{N}} A_{j}} p_{\omega} = \sum\limits_{j \in \mathbb{N}} \sum\limits_{\omega \in A_{j}} p_{\omega} = \sum\limits_{j \in \mathbb{N}} P(A_{j})[/mm]
> für jede Folge paarweise unvereinbarer  Ereignisse [mm]A_{1}, A_{2}, \ldots \in \mathcal{P}(\Omega)[/mm].

Na da fehlt aber die interessante Begründung, warum [mm] $\sum\limits_{\omega \in \bigcup\limits_{j \in \mathbb{N}} A_{j}} p_{\omega} [/mm] = [mm] \sum\limits_{j \in \mathbb{N}} \sum\limits_{\omega \in A_{j}} p_{\omega}$ [/mm] gilt…

> Ist der Beweis so in Ordnung? Freue mich auf ein Feedback :-)

Der Rest passt.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de