www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Wann ist das Spiel fair?
Wann ist das Spiel fair? < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wann ist das Spiel fair?: Parameter in einer Stochastika
Status: (Frage) beantwortet Status 
Datum: 17:59 Sa 22.09.2012
Autor: Mario1993

Aufgabe
1. Max darf den Würfel für einen Einsatz von 1 Euro zweimal werfen.Er hat gewonnen,wenn die Aufgensumme 3 beträgt oder wenn zwei Sechsen fallen.Er erhält dann 3 Euro Auszahlung.Ist das Spiel für Max günstig?
2. Heino darf für einen Einsatz von 6 Euro dreimal würfeln.Bei jeder zwei,die dabei fällt,erhält er eine Sofortauszahlung von a Euro.Für welchen Wert von a ist dieses Spiel fair?

DER WÜRFEL FÜR BEIDE AUFGABEN IST SO AUFGEBAUT: ES GIBT 1 Feld für die Nr 1; 3 Felder für die Nr 2; 2 Felder für die Nr 6

Verstehe leider beide Aufgaben nicht, habe auch schon verschiedenste Rechenwege angewendet (zB bei 2.: a*wahrscheinlichkeit von einer zwei + a*wahrscheinlichkeit von zwei zweien hintereinander + a*wahrscheinlichkeit von drei zweien hintereinander, dann nach a aufgelöst etc.). Bitte um Präsentation sowie Erklärung beider Rechenwege!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=500879

        
Bezug
Wann ist das Spiel fair?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Sa 22.09.2012
Autor: Mario1993

Also den ersten Teil der Aufgabe habe, fehlt nur noch der zweite

Bezug
        
Bezug
Wann ist das Spiel fair?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Sa 22.09.2012
Autor: Richie1401

Hallo Mario,

die ganze Aufgabe läuft auf die Berechnung des Erwartungswertes hinaus. Der Erwartungswert gibt an, wie viel (in diesem Beispiel) Geld man auf lange Sicht gewinnt oder verliert.

Bei deiner Aufgabe gibt es ja nur die Ereignisse "gewinnen" oder "verlieren". Beim gewinnen erhält er 3 Euro, muss allerdings 1 Euro Einsatz zahlen. Gesamtgewinn sind also 2 Euro. Wenn er verliert, dann muss er keine Strafe oder sonstiges bezahlen. Also würde er lediglich den Einsatz von 1 Euro verlieren.

In diesem Fall berechnet sich dann der Erwartungswert [mm] E(x)=p_{gewinnen}*x_{gewinnen}+p_{verlieren}*x_{verlieren} [/mm]
p sind die Wahrscheinlichkeiten und x der Gewinn/Verlust des Geldes.

Die Vorgehensweise für dich ist nun:
1. Bestimme zunächst die Wahrscheinlichkeiten für den Gewinn und für den Verlust.
2. Bestimme E(x)
3. Intepretiere den Erwartungswert.

Für Aufgabe b: Ein Spiel ist fair, wenn der E(x)=0 ist. Gehe also wie oben vor, und bestimme dann den Wert a durch gleichsetzen von E(x)=0.

Viele Grüße

Bezug
                
Bezug
Wann ist das Spiel fair?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:20 So 23.09.2012
Autor: Mario1993

a) habe ich!
nun zur b) muss ich dort alle wahrscheinlichkeiten addieren (also a* wahrscheinlichkeit 2 kommt 1x mal vor + 2a* wahrscheinlichkeit 2 kommt 2x mal vor + 3a* wahrscheinlichkeit 3 kommt 1x mal vor )?
kam da mithilfe eines anderen auf a=7.71

Bezug
                        
Bezug
Wann ist das Spiel fair?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 So 23.09.2012
Autor: Richie1401

Guten Morgen Mario,

hier noch einmal die Aufgabe:
"Heino darf für einen Einsatz von 6 Euro dreimal würfeln.Bei jeder zwei,die dabei fällt,erhält er eine Sofortauszahlung von a Euro.Für welchen Wert von a ist dieses Spiel fair?"

Die Frage ist nun: Mit welcher Wahrscheinlichkeit (WSK) würfelt er keine zwei, würfelt er eine zwei, würfelt er zwei zweien, würfelt er drei zweien?

Dazu kannst du dir nun auch einen Baum zeichnen, wenn dir das hilfreich erscheint.

In deiner Rechnung (die im grunde den richtigen Ansatz wählt) hast du aber den negativen Fall vergessen. Es gibt ja auch die Mäglichkeit, dass er gar keine 2 würfelt.
Weiterhin ist bei deiner Rechnung zu beachten, dass er ja noch den Einsatz von 6 Euro bezahlen muss. Das würde die Rechnung natürlich verändern.

Ob nun dein a richtig ist, kann ich schlecht beurteilen. Da wäre es vllt. hilreich, wenn du auch schnell die WSK für die Ereignisse hier reintippst. Da können wir das besser und schneller überprüfen.

Bezug
                                
Bezug
Wann ist das Spiel fair?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:17 So 23.09.2012
Autor: Mario1993

Habe jetzt einmal alle Gewinnwahrscheinlichkeiten aufgeschrieben, man gewinnt bei:

222 = (1)/(8) -> 3a
221 = (3)/(24) -> 2a
226 = (1)/(4) -> 2a
216 = (1)/(6) -> a
266 = (1)/(12) -> a
211 = (1)/(24) -> a

Kann man jetzt nicht einfach
(3a)/(8)  + (6a)/(24) + (2a)/(4) + (a)/(6) + (a)/(12) + (a)/(24) = 6 setzen und dann nach a auflösen?


Bezug
                                        
Bezug
Wann ist das Spiel fair?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:07 Mo 24.09.2012
Autor: Richie1401

Hallo Mario,

die Frage bitte auch als Frage markieren, sonst wird es schwer eine Antwort zu erhalten ;)

> 222 = (1)/(8) -> 3a
>  221 = (3)/(24) -> 2a

>  226 = (1)/(4) -> 2a

>  216 = (1)/(6) -> a

>  266 = (1)/(12) -> a

>  211 = (1)/(24) -> a

Und wo sind die ganzen Misserfolge? Und warum so kompliziert? Man interessiert sich ja nur für zwei Ereignisse: Würfelt er eine 2, oder würfelt er keine 2?

Durch diese Überlegung ergibt sich folgendes Baumdiagramm:
Schwarz ist der Misserfolg (keine 2 gewürfelt) und Weiß ist der Erfolg (2 gewürfelt).
[Dateianhang nicht öffentlich]

>  
> Kann man jetzt nicht einfach
>  (3a)/(8)  + (6a)/(24) + (2a)/(4) + (a)/(6) + (a)/(12) +
> (a)/(24) = 6 setzen und dann nach a auflösen?
>  

Wie du hier gleichsetzt ist mir schleierhaft.
Ich schreibe hier den Gewinn auf für "Anzahl mal 2":
0x2: -6 Eur
1x2: -6+1a Eur
2x2: -6+2a Eur
3x2: -6+3a Eur

Und nun soll E(x)=0 sein.

[mm] E(x)=-6*\frac{1}{8}+(-6+a)*\frac{3}{8}+(-6+2a)*\frac{3}{8}+(-6+3a)*\frac{1}{8}=0 [/mm]

Nun vereinfachen und a berechnen.


Zur späteren Kontrolle: a=4

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de