www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Wartezeit-Aufgabe / Kontrolle
Wartezeit-Aufgabe / Kontrolle < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wartezeit-Aufgabe / Kontrolle: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:23 Do 09.11.2006
Autor: laryllan

Aufgabe
Busse kommen in 10-Minuten-Intervallen an, beginnend um 1200 Uhr. Ein Mann kommt ‚t’ Minuten nach 1200 Uhr an - mit der Verteilungsfunktion:

[tex] F(t\le x)=\begin{cases} 0, & \mbox{für } x < 0 \\ \bruch{x}{60}, & \mbox{für } 0 < x \le 60 \\ 1 & \mbox{für } x > 60 \end{cases}. [/tex]

Berechnen Sie die Dichtefunktion und bestimmen sie die Wahrscheinlichkeit, dass der Mann höchstens 5 Minuten warten muss.

Aloa zusammen,

Zu der obigen Aufgabe habe ich mir ein paar Gedanken gemacht. Allerdings kommt mir mein Ergebnis doch deutlich zu trivial vor.

Hier meine Ideen:

Um aus der Verteilungsfunktion die Dichte zu erhalten, muss ich die Verteilungsfunktion ableiten. Somit erhalte ich:

[tex] F'(t\le x)=f(t\le x)=\begin{cases} 0, & \mbox{für } x < 0 \\ \bruch{1}{60}, & \mbox{für } 0 < x \le 60 \\ 0 & \mbox{für } x > 60 \end{cases}. [/tex]

Soweit so gut.
- Dabei bin ich mir schon recht sicher.

Jetzt die Wahrscheinlichkeit. Da die Busse alle 10 Minuten fahren, kommen sie ja gerade um 12:10, 12:20, 12:30, 12:40, 12:50 und 13:00 (usw.).

Wenn der Mann t Minuten nach 12 ankommt, muss er genau in den 5 Minuten vor dem Erscheinen des Busses ankommen, damit er auch wirklich höchstens 5 Minuten warten muss.

Würde er bspw. um 12:13 ankommen, müsste er ja 7 Minuten warten.

Die Wahrscheinlichkeit - sofern ich mich eben nicht grundlegend vertan habe - müsste demnach wie folgt zu berechnen sein:
[tex] F(t\le 5)=\integral_{5}^{10}{\bruch{1}{60} dx} + \integral_{15}^{20}{\bruch{1}{60} dx} + \integral_{25}^{30}{\bruch{1}{60} dx} + \integral_{35}^{40}{\bruch{1}{60} dx} + \integral_{45}^{50}{\bruch{1}{60} dx} +\integral_{55}^{60}{\bruch{1}{60} dx}. [/tex]

Wenn ich die Integrale ausrechne erhalte ich dann gerade für jedes Intergal (Stammfunktion ist ja gerade die Verteilungsfunktion die gegeben ist) gerade [tex] \bruch{5}{60} [/tex]. Zusammengezogen als [tex] \bruch{30}{60} [/tex] = [tex] \bruch{1}{2} [/tex].

Rein von der Überlegung her, macht das ja schon Sinn - entweder ich kommen im 'günstige' Zeitfenster oder eben im ungünstigen.

Die Frage ist eben nur: Hab ich es mir zu einfach gemacht?

Hoffendlich findet das hier noch jemand rechtzeitig.

Namárie,
sagt ein Lary, wo nun mal hoffen tut

        
Bezug
Wartezeit-Aufgabe / Kontrolle: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 So 12.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de