www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Axiomatische Mengenlehre" - Warum ist ein Halbraum konvex?
Warum ist ein Halbraum konvex? < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Warum ist ein Halbraum konvex?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Mo 02.03.2009
Autor: barsch

Aufgabe
Halbraum ist konvex.

Hi,

ich versuche mir gerade zu verdeutlichen, warum ein Halbraum konvex ist. Dabei stehen mir im Skript folgende Definitionen zur Verfügung:

Eine Menge [mm] C\subset{\IR^n} [/mm] heißt konvex, wenn für alle [mm] x,y\in{C}, \lambda\in{[0,1]}: [/mm]

[mm] \lambda*x+(1-\lambda)*y\in{C} [/mm]

"Also dann, wenn die Strecke zwischen zwei Punkten aus der Menge wieder in der Menge enthalten ist."

Sei [mm] a\in\IR^n, a\not=0,\beta\in\IR, [/mm] so heißt

[mm] \overline{H}:=\{x|a^Tx\le{\beta}\} [/mm] ein Halbraum.

Also muss ich mir jetzt zwei Punkte [mm] x,y\in\overline{H} [/mm] nehmen und zeigen, dass

[mm] \lambda*x+(1-\lambda)*y\in{\overline{H}} [/mm]

Aber jetzt fehlt mir schon jeglicher Ansatz [verwirrt]

MfG barsch

Ich habe diese Frage in keinem anderen Forum auf anderen Internetseiten gestellt.


        
Bezug
Warum ist ein Halbraum konvex?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Mo 02.03.2009
Autor: fred97


> Halbraum ist konvex.
>  Hi,
>  
> ich versuche mir gerade zu verdeutlichen, warum ein
> Halbraum konvex ist. Dabei stehen mir im Skript folgende
> Definitionen zur Verfügung:
>  
> Eine Menge [mm]C\subset{\IR^n}[/mm] heißt konvex, wenn für alle
> [mm]x,y\in{C}, \lambda\in{[0,1]}:[/mm]
>  
> [mm]\lambda*x+(1-\lambda)*y\in{C}[/mm]
>  
> "Also dann, wenn die Strecke zwischen zwei Punkten aus der
> Menge wieder in der Menge enthalten ist."
>  
> Sei [mm]a\in\IR^n, a\not=0,\beta\in\IR,[/mm] so heißt
>  
> [mm]\overline{H}:=\{x|a^Tx\le{\beta}\}[/mm] ein Halbraum.
>  
> Also muss ich mir jetzt zwei Punkte [mm]x,y\in\overline{H}[/mm]
> nehmen und zeigen, dass
>  
> [mm]\lambda*x+(1-\lambda)*y\in{\overline{H}}[/mm]
>  
> Aber jetzt fehlt mir schon jeglicher Ansatz [verwirrt]
>  


Mann, Du mußt doch nur nachrechnen !!

Wegen x,y [mm] \in \overline{H} [/mm] gilt: $a^Tx [mm] \le \beta$ [/mm] und $a^Ty [mm] \le \beta$. [/mm]  Dann:
    

     [mm] $a^T(\lambda*x+(1-\lambda)*y) [/mm] = [mm] \lambda [/mm] a^Tx [mm] +(1-\lambda)a^Ty \le \lambda \beta +(1-\lambda) \beta [/mm] = [mm] \beta$, [/mm]

also:   [mm] \lambda*x+(1-\lambda)*y \in \overline{H} [/mm]

FRED





> MfG barsch
>  
> Ich habe diese Frage in keinem anderen Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Warum ist ein Halbraum konvex?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Mo 02.03.2009
Autor: barsch

Hallo,

>
> Mann, Du mußt doch nur nachrechnen !!

[grins]

  

> Wegen x,y [mm]\in \overline{H}[/mm] gilt: [mm]a^Tx \le \beta[/mm] und [mm]a^Ty \le \beta[/mm].
>  Dann:
>      
>
> [mm]a^T(\lambda*x+(1-\lambda)*y) = \lambda a^Tx +(1-\lambda)a^Ty \le \lambda \beta +(1-\lambda) \beta = \beta[/mm],
>  
> also:   [mm]\lambda*x+(1-\lambda)*y \in \overline{H}[/mm]
>  
> FRED

Sehr einleuchtend. Danke!

Mfg barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de