www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Was ist die Basis?
Was ist die Basis? < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Was ist die Basis?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:25 Di 18.11.2008
Autor: Englein89

Hallo,

ich hab ein ganz schlimmes Verständnisproblem bezgl der Basis?

Es ist doch definitionsgemäß die Menge aller linear abhängiger Vektoren im Nullraum, oder?

Und wenn das stimmt, wie berechne ich denn "eine Basis"? So steht es ja in den Aufgabenstellungen oft.

Was ist der Unterschied zw der Basis des Nullraums/Kerns und des "Bildes"?

Danke, danke, danke!

        
Bezug
Was ist die Basis?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Di 18.11.2008
Autor: leduart

Hallo englein
Da geht was grundsaetzlich schief in deiner Vorstellung:
erstmal braucht man nen Vektorraum V ich sag mal er hat die Dimension n, d.h. die Maximalanzahl linear unabhaengiger Vektoren ist n.
jetzt kannst du eine Basis waehlen, indem du beliebige n linear unabh. Vektoren aus diesem V nimmst. Dann kannst du jeden Vektor [mm] v\in [/mm] V als Linearkombination dieser n "Basisvektoren" darstellen.
wenn du etwa ne Basis [mm] (v_1,v_2,...,v_n) [/mm] hast dann ist z. Bsp. auch [mm] (v_1, v_1+v_2,v_3,..,v_n) [/mm] eine (andere) Basis.

Jetzt zu deinem Nullraum oder Kern und Bildraum.
Dazu brauchst du erstmal ne Abbildung von V auf einen anderen Vektorraum U, sei die Abbildung f also f(v)=u mit [mm] v\inV [/mm] und [mm] u\in [/mm] U.
alle Vektoren aus V die auf den 0-Vektor in U abgebildet werden bilden den Untervektorraum von V und der heisst Kern von f. also die Menge der v mit f(v)=0 liegen im Kern.
jetzt schaut man sich diesen Kern  [mm] K\subseteq [/mm] V an, bestimmt seine Dimension, die sei [mm] m\le [/mm] n. jetzt nimmt man also wieder m unabhaengige Vektoren aus K und bildet daraus ne Basis des Unterraums K.
Das Bild von V liegt in U, ich stelle die Dimension des Bildes fest , die ist laut dimensionssatz jetzt n-m und suche also n-m linear unabh. Vektoren in f(V). das ist dann eine basis des Bildes. und ich kann jeden Vektor des Bildes aus ihnen linear kombinieren.
etwas klarer?
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de