www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Wegzusammenhängende Mengen
Wegzusammenhängende Mengen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wegzusammenhängende Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 Mi 28.04.2010
Autor: mathestuden

Aufgabe
D3

(1) Zeigen Sie, dass eine stetige Abbildungzwischen topologischen Räumen wegzusammenhängende Mengen abbildet.

(2) Beweisen Sie dass die Menge [mm]\left\{ (x,y,z\in\IR^3:x^2+y^2=1 \right\}[/mm] wegzusammenhängend ist.

Hallo Mathefreunde,

mein Problem bei dieser Aufgabe ist, dass ich nicht weiß, wie ich (1) allgemein zeigen soll. Der Begriff "wegzusammenhängend" denke ich ist mir klar. Zu (2) müsste es, wenn ich es richtig verstanden habe, eine Funktion geben, dessen Zahlenpaar aus [0,1] und die dann in eine reelle Zahl abbildet. Hier wäre sie f(0,1) bzw.f(1,0). Beides wäre laut Mengenvorschrift immer 1, somit wegzusammenhängend.

Vielen Dank schon mal im Voraus

Christoph

        
Bezug
Wegzusammenhängende Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Mi 28.04.2010
Autor: fred97


> D3
>  
> (1) Zeigen Sie, dass eine stetige Abbildungzwischen
> topologischen Räumen wegzusammenhängende Mengen

auf wegzusammenh. Mengen


> abbildet.
>  
> (2) Beweisen Sie dass die Menge [mm]\left\{ (x,y,z\in\IR^3:x^2+y^2=1 \right\}[/mm]
> wegzusammenhängend ist.
>  Hallo Mathefreunde,
>  
> mein Problem bei dieser Aufgabe ist, dass ich nicht weiß,
> wie ich (1) allgemein zeigen soll. Der Begriff
> "wegzusammenhängend" denke ich ist mir klar.

Seien X und Y topologische Räume und f:X [mm] \to [/mm] Y stetig.

Du sollst zeigen: ist M eine wegzusammenh. Teilmenge von X, so ost f(M) eine wegzusammenh. Teilmenge von Y

Wenn Dir, wie Du sagst, der Begriff "wegzusammenhängend" klar ist, solltest Du das hinkriegen




Zu (2)

> müsste es, wenn ich es richtig verstanden habe, eine
> Funktion geben, dessen Zahlenpaar aus [0,1] und die dann in
> eine reelle Zahl abbildet. Hier wäre sie f(0,1)
> bzw.f(1,0). Beides wäre laut Mengenvorschrift immer 1,


   verstehst Du eigentlich selbst, was Du da schreibst ? Ich verstehs jedenfalls nicht. Aber ich ahnme was Du meinst.

wir setzen G:= $ [mm] \left\{ (x,y,z) \in \IR^3:x^2+y^2=1 \right\} [/mm] $ und def.

                $f: [0, 2 [mm] \pi] \times \IR \to [/mm] G$

durch    $f(t,z)= (cos(t), sin(t),z)$

Zeige:

        [0, 2 [mm] \pi] \times \IR [/mm] ist wegzusammenhängend

         $f([0, 2 [mm] \pi] \times \IR) [/mm] =G$

und

         f ist stetig

FRED




> somit wegzusammenhängend.
>  
> Vielen Dank schon mal im Voraus
>  
> Christoph


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de