www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Wendepunkte
Wendepunkte < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wendepunkte: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 21:26 Di 05.12.2006
Autor: Emilia

Aufgabe
Berechnen Sie die Koordinaten der Wendepunkte der funkton f mit [mm] f(x)=x^4+6x^3+4x-12 [/mm]

Guten Abend,

ich habe die Aufgabe nun gerechnet, bin mir aber nicht sicher ob sie so richtig ist. Wäre euch sehr verbunden, wenn jemand einen Blick darauf reskieren könnte....

[mm] f´(x)=4x^3+18x^2+24x+4 [/mm]
[mm] f´´(x)=12x^2+36x+24 [/mm]
f´´´(x)=24x+36

f´´(x)=0

[mm] 12x^2+36x+24=0 [/mm]
[mm] x^2+3x+2=0 [/mm]

[mm] x_1/2=(-3\pm\wurzel{3^2-8})/2 [/mm]
         = [mm] (-3\pm1)/2 [/mm]

[mm] x_1=-1 x_2=-2 [/mm]

f´´´(x)=25x+36
f´´´(-1)=12                  f´´´(-2)=-12
[mm] f´´´(-1)\not=0 f´´´(-2)\not=0 [/mm]

Die Wendepunkte des Graphen befinden sich [mm] P_1(-1/12) [/mm] und [mm] P_2(-2/-12) [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Di 05.12.2006
Autor: hase-hh

moin,

nun weiss ich nicht, ob du wirklich die in der aufgabenstellung genannte
funktion untersuchst - hast du die funktion richtig gepostet?

wenn ja, dann ist:

[mm] f(x)=x^4 +6x^3 [/mm] +4x -12     vgl. Aufgabenstellung!


[mm] f'(x)=4x^3 [/mm] + [mm] 18x^2 [/mm] +4


[mm] f''(x)=12x^2 [/mm] +36x

Nullstellen der 2. Abl.:

0 [mm] =12x^2 [/mm] + 36x = 12x(x+3)

[mm] x_{1}=0 [/mm]

[mm] x_{2}=-3 [/mm]


f'''(x)=24x +36

[mm] f'''(x_{1})=36 [/mm]    => WP (0 / -12)

[mm] f'''(x_{2})=-36 [/mm]   => WP(-3 / -105)


gruß
wolfgang















Bezug
                
Bezug
Wendepunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Di 05.12.2006
Autor: Emilia

Guten Abend Wolfgang,

ja die Funktion ist die, die zu untersuchen wäre. Vielen Dank für die schnelle Antwort. Eine Frage hätte ich allerdings noch, wobei ich Schwierigkeiten habe, dies nachzuvollziehen.

Nullstellen der 2. Abl.:

0  + 36x = 12x(x+3)

[mm] x_1=0 [/mm]

[mm] x_2=-3 [/mm]

wie kommst du auf diese Werte?? Durch abc-Formel und wenn ja, wie setzt man 12x(x+3) in die Formel ein`???

Bezug
                        
Bezug
Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Di 05.12.2006
Autor: Stefan-auchLotti


> Guten Abend Wolfgang,
>
> ja die Funktion ist die, die zu untersuchen wäre. Vielen
> Dank für die schnelle Antwort. Eine Frage hätte ich
> allerdings noch, wobei ich Schwierigkeiten habe, dies
> nachzuvollziehen.
>  
> Nullstellen der 2. Abl.:
>
> 0  + 36x = 12x(x+3)
>
> [mm]x_1=0[/mm]
>  
> [mm]x_2=-3[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> wie kommst du auf diese Werte?? Durch abc-Formel und wenn
> ja, wie setzt man 12x(x+3) in die Formel ein'???

$\rmfamily \text{Hi,}$

$\rmfamily \text{Ich vermute mal, dass du mit }a\text{-}b\text{-}c\text{-Formel die aufwändigere Form der }p\text{-}q\text{-Formel meinst. Du}$

$\rmfamily \text{kannst dir aber ein Stück Arbeit sparen, indem du hier }x\text{ ausklammerst, in dem Fall kannst du sogar}$

$\rmfamily 12x\text{ ausklammern. Verständlich?}$

$\rmfamily f''(x)=0 \gdw 12x^2+36x=0 \gdw 12x\red{*}\left(x+3)=0$

$\rmfamily \text{"'Ein Produkt ist gleich 0, wenn eines seiner Faktoren gleich 0 ist."' Merk' dir den Satz!}$

$\rmfamily 12x\red{*}\left(x+3)=0 \gdw 12x=0 \vee x+3=0 \gdw x=0 \vee x=-3$

$\rmfamily \text{Die hinreichende Überprüfung trau' ich dir zu.}$


$\rmfamily \text{Lotti.}$

Bezug
                                
Bezug
Wendepunkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:30 Di 05.12.2006
Autor: Emilia

Ein Lichtlein geht auf..............aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaahsooooo *lach* jetzt klar, jetzt klar, danke danke, Gott stehe dir bei, und einen fröhlichen Nikolaus, mögest du reichlich beschenkt werden, dankeschön

Grüßle

Emy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de