www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Werte für x
Werte für x < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Werte für x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Mi 11.04.2007
Autor: Tea

Aufgabe
Gegeben sei die Funktion [mm] $f(x)=\bruch{3x+1}{x-2}$ [/mm] Berechnen Sie

$f(2x-3)$

Ich habe [mm] $f(x)=\bruch{3x+1}{x-2}=\bruch{3(2x-3)+1}{(2x-3)-2}=\bruch{6x-9+1}{2x-5}=\bruch{6x-8}{2x-5}$, [/mm] was auch mit der Lösung übereinstimmt.

Nun soll ich angeben, welche Werte $x$ nicht annehmen darf, komme zu [mm] $x\not\in\{\bruch{5}{2}\}$, [/mm] da dann der Nenner $0$ wäre.

In der Lösung ist für diese Menge aber [mm] $x\not\in\{\bruch{5}{2},0,2\}$ [/mm] angegeben. Diese Werte kann ich nicht erkennen.

Will mir jemand weiterhelfen? Danke!

        
Bezug
Werte für x: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Mi 11.04.2007
Autor: ullim

Hi,

das [mm] x\ne0 [/mm] gelten soll, sehe ich auch nicht. [mm] x\ne2 [/mm] stammt von der Ursprungsfunktions, weil da der Nenner x-2 lautet.

mfg ullim

Bezug
                
Bezug
Werte für x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mi 11.04.2007
Autor: Tea


> Hi,
>  
> das [mm]x\ne0[/mm] gelten soll, sehe ich auch nicht.

Ich auch immer noch nicht.

Finde selbst das [mm]x\ne2[/mm] im Kontext der Aufgabe verwirrend, es ist ja mehr eine Angabe des Definitionsbereiches als etwas Besonderes des Befehls $f(2x-3)$

>[mm]x\ne2[/mm] stammt

> von der Ursprungsfunktions, weil da der Nenner x-2 lautet.
>  

Macht Sinn :-)

> mfg ullim

Danke ullim!

Bezug
                        
Bezug
Werte für x: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 Do 12.04.2007
Autor: Sigrid

Hallo Tea,

> > Hi,
>  >  
> > das [mm]x\ne0[/mm] gelten soll, sehe ich auch nicht.
>
> Ich auch immer noch nicht.
>  
> Finde selbst das [mm]x\ne2[/mm] im Kontext der Aufgabe verwirrend,
> es ist ja mehr eine Angabe des Definitionsbereiches als
> etwas Besonderes des Befehls [mm]f(2x-3)[/mm]

Ich sehe auch nur $ x = [mm] \bruch{5}{2} [/mm] $

Noch deutlicher siehst du das, wenn du umbenennst und f(2a-3) berechnest. Wenn du jetzt fragst, welchen Wert a nicht annehmen darf, kommst du nur auf $ a = [mm] \bruch{5}{2} [/mm] $

Wo hast du die Lösung her? Steht sie im Buch? Wenn ja, in welchem?

Gruß
Sigrid

>  
> >[mm]x\ne2[/mm] stammt
> > von der Ursprungsfunktions, weil da der Nenner x-2 lautet.
>  >  
>
> Macht Sinn :-)
>  
> > mfg ullim
>
> Danke ullim!


Bezug
                                
Bezug
Werte für x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Do 12.04.2007
Autor: Tea


> Hallo Tea,
>  
> > > Hi,
>  >  >  
> > > das [mm]x\ne0[/mm] gelten soll, sehe ich auch nicht.
> >
> > Ich auch immer noch nicht.
>  >  
> > Finde selbst das [mm]x\ne2[/mm] im Kontext der Aufgabe verwirrend,
> > es ist ja mehr eine Angabe des Definitionsbereiches als
> > etwas Besonderes des Befehls [mm]f(2x-3)[/mm]
>  
> Ich sehe auch nur [mm]x = \bruch{5}{2}[/mm]
>  
> Noch deutlicher siehst du das, wenn du umbenennst und
> f(2a-3) berechnest. Wenn du jetzt fragst, welchen Wert a
> nicht annehmen darf, kommst du nur auf [mm]a = \bruch{5}{2}[/mm]

Auch ein guter Tipp! Danke :-)

>  
> Wo hast du die Lösung her? Steht sie im Buch? Wenn ja, in
> welchem?

Die Lösung wurde so angeschrieben, werde da nochmal nachfragen. Aber wird wohl einfach ein Abschreibefehler gewesen sein, die $0$ macht einfach zu wenig Sinn.

>  
> Gruß
>  Sigrid
>  
> >  

> > >[mm]x\ne2[/mm] stammt
> > > von der Ursprungsfunktions, weil da der Nenner x-2 lautet.
>  >  >  
> >
> > Macht Sinn :-)
>  >  
> > > mfg ullim
> >
> > Danke ullim!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de