www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Wertebereiche, Umkehrfunktion
Wertebereiche, Umkehrfunktion < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wertebereiche, Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Di 19.05.2009
Autor: fencheltee

Aufgabe
a) Zeigen sie: [mm] W_{sin}=\IC [/mm]
b) Bestimmen sie Definitions- und Wertebereich der komplexen Funktion [mm] f(z)=tan(z)=\bruch{sin(z)}{cos(z)} [/mm] und eine Rechenformel für die Notumkehrfunktion arctan(z).

Hallo,
zur a) hab ich mir gedacht:
sin(z)=sin(x+jy)=sin(x)*cosh(y)+j*cos(x)*sinh(y)
man sieht  dann, dass der realteil jeden beliebigen wert annehmen kann, und der imaginärteil auch, somit [mm] W_{sin}=\IC. [/mm] aber wäre die begründung ausreichend?
zur b) diese habe ich auch versucht durch obige Umformung auszudrücken, aber bei dem entsprechenden Term kürzt sich scheinbar nichts weg. Welcher Weg würde sich da eher anbieten?
Gibt es auch graphische Lösungsverfahren?
gruß und schönen abend!

        
Bezug
Wertebereiche, Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Di 19.05.2009
Autor: Denny22


> a) Zeigen sie: [mm]W_{sin}=\IC[/mm]
>  b) Bestimmen sie Definitions- und Wertebereich der
> komplexen Funktion [mm]f(z)=tan(z)=\bruch{sin(z)}{cos(z)}[/mm] und
> eine Rechenformel für die Notumkehrfunktion arctan(z).

Hallo,

>  Hallo,
>  zur a) hab ich mir gedacht:
>  sin(z)=sin(x+jy)=sin(x)*cosh(y)+j*cos(x)*sinh(y)
>  man sieht  dann, dass der realteil jeden beliebigen wert
> annehmen kann, und der imaginärteil auch, somit
> [mm]W_{sin}=\IC.[/mm] aber wäre die begründung ausreichend?

Sicherlich ist Dein Weg über das komplexe Additionstheorem möglich, aber wieso argumentierst Du nicht mit Hilfe der Eulerschen Formel über (ich hoffe, dass ich mich nicht verrechnet habe)
     [mm] $\sin(z)=\frac{1}{2i}(e^{z}-e^{-z})=-\frac{i}{2}(e^{x}e^{iy}-e^{-x}e^{-iy})=-\frac{i}{2}(e^{x}(\cos(y)+i\sin(y))-e^{-x}(\cos(-y)+i\sin(-y)))$ [/mm]
     [mm] $=\frac{1}{2}e^{x}\sin(y)-e^{-x}\cos(y)+i(-\frac{1}{2}e^{x}\cos(y)+e^{-x}\sin(y))$ [/mm]

Hier sind alle Ausdrücke für alle [mm] $x,y\in\IR$ [/mm] wohldefiniert, weswegen der Sinus für alle [mm] $z\in\IC$ [/mm] wohldefiniert ist und [mm] $\IC$ [/mm] als Definitionsbereich besitzt.

>  zur b) diese habe ich auch versucht durch obige Umformung
> auszudrücken, aber bei dem entsprechenden Term kürzt sich
> scheinbar nichts weg. Welcher Weg würde sich da eher
> anbieten?

Ich würde ähnlich wie in Aufgabenteil $a)$ vorgehen. Für den Sinus weißt Du nach $a)$, dass der Definitionsbereich ganz [mm] $\IC$ [/mm] ist. Analog zu $a)$ kannst Du auch zeigen, dass der Definitionsbereich vom Kosinus ganz [mm] $\IC$ [/mm] ist. Damit ist der Tangens nur in den Nullstellen des Kosinus nicht definiert (da sich dort Pole befinden), der bekanntlich nur die bereits aus dem reellen bekannten Nullstellen besitzt, d.h. der Definitionsbereich des Tangens ist
     [mm] $D:=\IC\backslash\{k\pi+\frac{\pi}{2}\mid k\in\IZ\}$ [/mm]

> Gibt es auch graphische Lösungsverfahren?

Ich verstehe diese Frage nicht ganz. Ein graphisches Lösungsverfahren für diese Aufgabe? Nein. Eine graphische Darstellung dieser Funktionen? Ja, dabei kommt es darauf an, wie Du die Abbildungen darstellen möchtest, z.B.
     [mm] $z\longmapsto\mathrm{Re}(\sin(z))$ [/mm]
     [mm] $z\longmapsto\mathrm{Im}(\sin(z))$ [/mm]
     [mm] $z\longmapsto |\sin(z)|$ [/mm]
und viele mehr.

>  gruß und schönen abend!

Gruß Denny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de