www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Wie löst man das?
Wie löst man das? < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie löst man das?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Mo 23.01.2012
Autor: bandchef

Aufgabe
Lösen sie: [mm] $\frac{9}{11} [/mm] = [mm] \frac{4^x}{2^x}$ [/mm]

Wie löst man obige Aufgabe nach x auf? Das geht doch einfach gar nicht oder?

        
Bezug
Wie löst man das?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Mo 23.01.2012
Autor: fred97


> Lösen sie: [mm]\frac{9}{11} = \frac{4^x}{2^x}[/mm]
>  Wie löst man
> obige Aufgabe nach x auf? Das geht doch einfach gar nicht
> oder?

Doch: [mm]\frac{9}{11} = \frac{4^x}{2^x}= (\bruch{4}{2})^x=2^x[/mm]

Jetzt rechts und links logarithmieren [mm] (log_2) [/mm]

FRED


Bezug
                
Bezug
Wie löst man das?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mo 23.01.2012
Autor: bandchef

Danke jetzt versteh ich das :-)

Hab aber noch ein Problem:

$1 = [mm] \frac{2^x+4^x}{2^x-4^x}$ [/mm]

Das geht aber wirklich nicht zum auflösen, oder?

Bezug
                        
Bezug
Wie löst man das?: umstellen ja - Lösung nein
Status: (Antwort) fertig Status 
Datum: 17:39 Mo 23.01.2012
Autor: Loddar

Hallo bandchef!


Man kann auch diese Gleichung eindeutig nach $x \ = \ ...$ auflösen durch entsprechende Umformungen.
Jedoch ist die Lösungsmenge die leere Mange.


Gruß
Loddar


Bezug
                                
Bezug
Wie löst man das?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Mo 23.01.2012
Autor: bandchef

Dei Aufgabe stammt eigentlich aus ein anderen Aufgabe, nämlich, dass man diejenigen x-Werte berechnen soll, die keinen Dezimalstellenverlust hervorrufen. Wenn du nun sagst, dass da die leere Menge herauskommt, kann man da drauf schließen, dass es eben keine x-Werte gibt, bei denen keine einzige Stelle verloren geht?

Bezug
                                        
Bezug
Wie löst man das?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Mo 23.01.2012
Autor: Gonozal_IX

Hiho,

> Dei Aufgabe stammt eigentlich aus ein anderen Aufgabe,
> nämlich, dass man diejenigen x-Werte berechnen soll, die
> keinen Dezimalstellenverlust hervorrufen. Wenn du nun
> sagst, dass da die leere Menge herauskommt, kann man da
> drauf schließen, dass es eben keine x-Werte gibt, bei
> denen keine einzige Stelle verloren geht?

sofern deine Formel stimmt: Ja, das kann man dann.

MFG,
Gono.


Bezug
                                                
Bezug
Wie löst man das?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:34 Mo 23.01.2012
Autor: bandchef

Danke für die Antworten.


Aufgabe: Welche x-Werte rufen keine einzige Dezimalstelle Verlust hervor?

Ich hab das so gemacht:

$f(x) = [mm] \underbrace{2^x}_{=x}-\underbrace{4^x}_{=y}$ [/mm]

[mm] $B^m [/mm] = [mm] \frac{x+y}{x-y} \Leftrightarrow 10^0 [/mm] = [mm] \frac{2^x+4^x}{2^x-4^x} \Leftrightarrow 0=e^{x \cdot ln(4)} \Rightarrow \mathbb [/mm] L = [mm] \{\} \Rightarrow$ [/mm] Schlussfolgerung: Somit gibt es keinen x-Wert bei dem keine einzige Dezimalstelle verloren geht.



[mm] $10^0$ [/mm] deswegen weil ja in de Aufgabe keine Dezimalstelle Verlust gefordert ist. Das B ist die Basis des Zahlensystems und das m soll die Stellen angeben. Wie würdet ihr/du das Problem lösen?



Kurz noch zur Erklärung der Formel:
Bei der Subtraktion z=x-y halten wir x fest und prüfen, für welche y<x ein Fehler von höchstens m Stellen zur Basis B auftritt. Die Grenzen dieses Bereichs liegt also bei: $ [mm] B^m [/mm] = [mm] \frac{x+y}{x-y} [/mm] $. In x und y werden die Teile der Funktion eingesetzt die eben interessant sind. Mehr Erklärung dazu hab ich nicht.

Bezug
                                                        
Bezug
Wie löst man das?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 Mo 23.01.2012
Autor: leduart

Hallo
warum ein zweiter thread und ohne auf den ersten zu verweisen?
Gruss leduart

Bezug
                                                                
Bezug
Wie löst man das?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Mo 23.01.2012
Autor: bandchef

Es tut mir leid. Das hab ich wohl vergessen. Hier der Link auf den "alten" Thread: https://vorhilfe.de/read?i=861544

Bezug
                                                        
Bezug
Wie löst man das?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 25.01.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de