www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Wiederkehrsatz von Mark Kac
Wiederkehrsatz von Mark Kac < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wiederkehrsatz von Mark Kac: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 15:41 So 01.06.2014
Autor: Tina213

Aufgabe
[Wiederkehrsatz von Mark Kac]:
Sei (Xn)n≥0 eine Folge von Zufallsgrößen. (Xn) stationär bezüglich [mm] P\alpha, \alpha [/mm] eine stationäre Verteilung. Dann gilt:
[mm] \alpha(x)E^{x} (t_{x})=P^{\alpha}(t_{x} [/mm] <∞) , wobei [mm] E^{x} [/mm] der Erwartungswert bezüglich [mm] P^{x} [/mm] ist. ( [mm] t_{x} [/mm] sei die Stoppzeit)

[Beweis (Anfang)]:
Dies ergibt sich aus der Stationarität der Folge [mm] (X_{n})_{n\ge 0} [/mm] bezüglich [mm] P^{\alpha}. [/mm] Es gilt nämlich

[mm] \alpha(x) E^{\alpha}(t_{x}) [/mm] = [mm] E^{\alpha}(1_{(X_{0}=x)} t_{x}) [/mm] = [mm] E^{\alpha}(1_{X_{0}=x} \summe_{k\ge 0} 1_{(t_{x}>k)}) [/mm]  =....


Es geht hierbei um den Beweis vom Wiederkehrsatz von Mark Kac.
Ich muss für ein Referat die einzelnen Schritte vom Beweis mathematisch präzise erläutern. Leider verstehe ich schon die ersten beiden Schritte nicht. Wieso schreibt man [mm] E^{\alpha} [/mm] und wie kommt die Indikatorfunktion zustande?
Kann mir da jemand helfen?

Vielen Dank im Voraus!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Wiederkehrsatz von Mark Kac: Doppelposting
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 So 01.06.2014
Autor: Diophant

Hallo,

dies ist ein Doppelposting. Bitte mache hier weiter. Bzw. warte bitte ab, ob eine Reaktion kommt. Ich werde den Fälligkeitszeitpunkt mal nach hinten schieben und deine Frage pushen.

Bitte achte selbst ein wenig darauf, den Fälligkeitszeitpunkt einer Frage sinnvoll zu wählen.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de