www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Winkel in Pyramiden
Winkel in Pyramiden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel in Pyramiden: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:48 Fr 02.01.2015
Autor: Brindy

Aufgabe
Unter welchem Winkel stoßen benachbarte Seitenflächen einer quadratischen Pyramide zusammen?

Hallo alle zusammen,

ich komme mit dieser Aufgabe einfach nicht weiter. Ich weiß, dass der Winkel an der Grundfläche von zwei benachbarten Seiten 90 Grad ist. Aber wenn die Pyramide oben spitz zu geht, verändert sich der Winkel da? Oder bleibt er 90 Grad? Nur wäre das doch dann viel zu leicht für eine solche Aufgabe, oder?

Vielen Dank für eine Antwort.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Winkel in Pyramiden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Fr 02.01.2015
Autor: Fulla


> Unter welchem Winkel stoßen benachbarte Seitenflächen
> einer quadratischen Pyramide zusammen?
> Hallo alle zusammen,

>

> ich komme mit dieser Aufgabe einfach nicht weiter. Ich
> weiß, dass der Winkel an der Grundfläche von zwei
> benachbarten Seiten 90 Grad ist. Aber wenn die Pyramide
> oben spitz zu geht, verändert sich der Winkel da? Oder
> bleibt er 90 Grad? Nur wäre das doch dann viel zu leicht
> für eine solche Aufgabe, oder?

Hallo Brindy,

[willkommenmr]

Du hast die Aufgabe ja schon richtigerweise ins Vektorrechnungsforum einsortiert.

Es fehlt aber noch eine Angabe über die Höhe der Pyramide. Ich vermute mal, dass alle Seitenlängen gleich lang sind (?) also die vier Seiten des Grundflächenquadrates und die Seiten zur Spitze hoch.

Leg dir zum Rechnen die Pyramide in ein Koordinatensystem. Wenn du einen Eckpunkt in den Ursprung legst, bilden z.B. die Punkte (0|0|0), (a|0|0), (a|a|0) und (0|a|0) die Grundfläche und (a/2|a/2|h) die Spitze (wobei du h hier vermutlich ersetzen kannst - je nach (vollständiger) Aufgabenstellung).

Gesucht ist jetzt der Winkel unter dem sich zwei angrenzende Seitenflächen bzw. -ebenen schneiden. Stelle also zwei Ebenengleichungen auf und berechne den Winkel. (Tipp: Normalenvektor)


Lieben Gruß,
Fulla

Bezug
                
Bezug
Winkel in Pyramiden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:25 Fr 02.01.2015
Autor: Brindy

Vielen Dank für die Antwort.

Ich habe diese Angaben leider gerade vergessen zu erwähnen. Entschuldigung!
Die Höhe der Pyramide ist 7m und die Grundflächen sind 6m lang.

Ich habe die Pyramide bereits in ein Koordinatensystem gelegt und kam auch auf die Idee, es über Normalenvektoren der Ebenen zu versuchen. Dabei kam jedoch ein Winkel (Berechnung über das Skalarprodukt) heraus, der 98,93 Grad beträgt. Und das hat mich gewundert, da dieser über 90 Grad war.
Könnte es aber doch sein, dass dies stimmt und warum? Ich kann mir das nicht bildlich vorstellen.

Liebe Grüße und vielen Dank.

Bezug
                        
Bezug
Winkel in Pyramiden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Fr 02.01.2015
Autor: GvC

Wenn die Pyramide eine endliche Höhe hat, dann muss der Winkel größer als 90° sein. 98,93° sind allerdings falsch. Richtig ist 115°.

Bezug
                                
Bezug
Winkel in Pyramiden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Fr 02.01.2015
Autor: Brindy

Ich habe folgende Punkte gewählt: A(3/-3/0); B(3/3/0); C(-3/3/0); D(-3/-3/0) und S(0/0/7).
Dann habe ich folgende Ebene gebildet:
EABS: [mm] \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix} [/mm] + t * [mm] \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} [/mm] + s *  [mm] \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} [/mm]

EADS: [mm] \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix} [/mm] + v * [mm] \begin{pmatrix} -6 \\ 0 \\ 0 \end{pmatrix} [/mm] + w *  [mm] \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} [/mm]

Davon jeweils die Normalenvektoren aus den Richtungsvektoren über das Kreuzprodukt ergibt einmal [mm] \begin{pmatrix} 42 \\ 0 \\ 18 \end{pmatrix} [/mm] und als zweiten Normalenvektor habe ich [mm] \begin{pmatrix} 0 \\ 42 \\ -18 \end{pmatrix} [/mm] raus.

Wenn ich mit diesen beiden Vektoren nun das Skalarprodukt bilde, erhalte ich 98,93 Grad. Wieso plötzlich doch 115 Grad?

Danke für die Antwort.

Bezug
                                        
Bezug
Winkel in Pyramiden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Fr 02.01.2015
Autor: chrisno

Ich widerspreche GvC.
Wenn die Pyramide unendlich hoch ist beträgt der Winkel 90°.
Wenn die Pyramide platt ist (Höhe Null), dann beträgt der Winkel 0°. Die sind Normalenvektoren der einzelnen Seiten sind dann parallel. 180° erhält man, wenn man die Orientierungen der Normalenvektoren abwechselnd nach innen und nach außen zeigen. So eine Wahl muss aber begründet werden.

Nun schau Dir nal Deine Normalenvektoren an. Wie sind sie gerichtet?
Ansonsten kann ich Deine Rechnung nachvollziehen. Nur stimmt der angegebene Winkel noch nicht, er muss ja kleiner als 90° sein. Wie GvC auf 115° kommt, weiß ich nicht.

Bezug
                                                
Bezug
Winkel in Pyramiden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:38 Sa 03.01.2015
Autor: Fulla

Hallo Chrisno,

und ich widerspreche Euch beiden ;-)
GvC hat mit den Winkeln schon recht...
Bei unendlicher Höhe sind wir uns ja einig: da schneiden sich die Seitenflächen unter 90°. Wenn du jetzt die Spitze runterdrückst, wird der Schnittwinkel der Seitenflächen größer - bis zum Grenzfall 180°. Wir betrachten ja den inneren Winkel.
Egal, wie die Normalenvektoren orientiert sind liefert das Skalarprodukt einen Winkel. Falls dieser kleiner als 90° sein sollte, wurde der Nebenwinkel des Gesuchten berechnet.

Wie GvC auf 115° kommt weiß ich auch nicht, ich komme auch auf Brindys Lösung von 98,93°.


Lieben Gruß,
Fulla

Bezug
                                                        
Bezug
Winkel in Pyramiden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:51 Sa 03.01.2015
Autor: chrisno

Ich möchte noch weiter diskutieren.
Ich habe noch einmal nachgeschaut und finde als Definition des Schnittwinkels zweier Ebenen:
der Winkel zwischen deren Normalenvektoren. Also bleibe ich bei 0° im Fall h = 0.

Brindy hat für [mm] $E_{ABS}$ [/mm] den Normalenvektor nach außen zeigend gewählt, für [mm] $E_{ADS}$ [/mm] nach innen zeigend. Sobald einer der beiden Normalenvektoren umgedreht wird, ergibt ich der Winkel 81,07° (= 180° - 98,93°).

Bezug
                                                                
Bezug
Winkel in Pyramiden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:28 Sa 03.01.2015
Autor: Brindy

Ich habe nun anstatt der Ebene ADS die Ebene BCS aufgestellt und es mit diesen beiden Normalenvektoren versucht. Dabei komme ich auch auf den Winkel 81,07 Grad.
Heißt das also, dass dieser der richtige Winkel innen ist?

Bezug
                                                                        
Bezug
Winkel in Pyramiden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Sa 03.01.2015
Autor: chrisno


> Ich habe nun anstatt der Ebene ADS die Ebene BCS
> aufgestellt und es mit diesen beiden Normalenvektoren
> versucht. Dabei komme ich auch auf den Winkel 81,07 Grad.
> Heißt das also, dass dieser der richtige Winkel innen ist?

Wenn Du den Winkel "innen" meinst, dann nicht.
Also: zuerst musst Du klären, was Du unter dem Winkel zwischen zwei Ebenen verstehst.
Ich habe die übliche Definition hingeschrieben.
Wenn Du in die Pyramide hinein kriechst und dann den Winkel misst, dann wirst Du die 98,93° erhalten.

Nimm mal Deine Ebene ADS und tausche die beiden Spannvektoren aus. Wenn Du dann das Kreuzprodukt ausrechnest, bekommst Du das gleiche Ergebnis wie zuvor, jedoch mit -1 multipliziert. Mit dem Skalarprodukt bekommst Du dann als Winkel zwischen den Ebenen ADS und ABS die 81,07 Grad heraus.

Es liegt also nur an der Art, wie man auf das Problem blickt. Wenn Du nicht die übliche Definition des Winkels zwischen zwei Ebenen nimmst, dann schreib das dazu und gib 98,93° an. Sonst ist es am besten, wenn Du direkt die Ebenengleichungen so hinschreibst, dass alle Normalenvektoren nach außen (oder innen) zeigen. Dann bekommst Du als Ergebnis die 81,07°.


Bezug
                                                                                
Bezug
Winkel in Pyramiden: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:27 Sa 03.01.2015
Autor: Brindy

Ich sage vielen, vielen lieben Dank für die Mühe. Habe wieder was Neues gelernt. :)

Bezug
                                                                                        
Bezug
Winkel in Pyramiden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 Sa 03.01.2015
Autor: GvC

Ich habe mich tatsächlich verrechnet, sorry! Die 98,93° sind richtig. Als Winkel habe ich den mit einem Winkelmesser zwischen den beiden Seitenflächen messbaren Winkel definiert. Der ist 180° minus dem Winkel zwischen den Normalenvektoren.

Bezug
        
Bezug
Winkel in Pyramiden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Fr 02.01.2015
Autor: GvC


> Unter welchem Winkel stoßen benachbarte Seitenflächen
> einer quadratischen Pyramide zusammen?
>  Hallo alle zusammen,
>  
> ich komme mit dieser Aufgabe einfach nicht weiter. Ich
> weiß, dass der Winkel an der Grundfläche von zwei
> benachbarten Seiten 90 Grad ist. Aber wenn die Pyramide
> oben spitz zu geht, verändert sich der Winkel da? Oder
> bleibt er 90 Grad?


Da hast Du irgendeinen Denk- oder Vorstellungsfehler. Der Winkel zwischen zwei Ebenen ist bei gegebener Höhe unveränderlich (Winkel zwischen den Normalvektoren). Er liegt zwischen 90° bei unendlich großer Höhe und 180° bei Höhe Null.



Bezug
                
Bezug
Winkel in Pyramiden: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Fr 02.01.2015
Autor: Brindy

Ahh! Jetzt habe ich es verstanden. Super. Vielen Dank. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de