www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Winkel komplexe Zahlen
Winkel komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel komplexe Zahlen: Tipp Idee
Status: (Frage) überfällig Status 
Datum: 12:04 So 08.11.2009
Autor: together

Seien u, v, w drei verschiedene komplexe Zahlen.
1. Es sei [mm] \phi [/mm] der Winkel, den man erhält, wenn man u, v und w in ein Koordinatensystem einzeichnet und die VErbindungsstrecke von v nach u als ersten Schenkel und die von v nach w als zweiten Schenkel wählt.
Es gibt hierzu 2 Skizzen mit:
1: u=(2+i), v=(-1-i) und w=-1,5+2,5i)
2: u=(4,5+i), v=(3-2i), und w=(5-2,5i)
Zeigen Sie, dass gilt:
[mm] \phi= [/mm] Arg [mm] (\bruch{w-v}{u-v}) [/mm]

2. Seien [mm] \alpha, \beta \in \IC [/mm] mit [mm] \alpha \not=0 [/mm] und sei [mm] f(x)=\alphaz+\beta. [/mm] Zeigen Sie, dass f die WInkel enthält, dass also für alle u, v, w mit [mm] u\not=v\not=w [/mm] gilt: Arg [mm] (\bruch{w-v}{u-v})=Arg (\bruch{f(w)-f(v)}{f(u)-f(v)}) [/mm]

Hallo zusammen,

leider stehe ich hier total auf dem Schlauch...
Muss ich für die Aufgabe einfach die Werte für u, v und w einsetzen?

Ich wäre für Tipps und Anregungen dankbar.

Ich habe diese Frage in keinem anderen Forum gestellt.

VG
together


Kann mir hier keiner helfen?
Ich bin für jeden Tipp dankbar.

VG
together

        
Bezug
Winkel komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Di 10.11.2009
Autor: together

Muss ich hier den Winkel ausrechnen (mit arctan o. ä.)?
Wäre echt super, wenn mir jemand einen Ansatz geben könnte!

VG
together

Bezug
                
Bezug
Winkel komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Di 10.11.2009
Autor: leduart

Hallo
1. Hast du den Winkel eingezeichnet.
weisst du, dass Arg(z) der Winkel von z zur reellen Achse ist? weisst du, was bei Division von 2 Zahlen mit dem Arg passiert. Das zusammengenommen ist die Antwort.
Also arg(z1)= [mm] \alpha arg(z2)=\beta [/mm] arg(z1/z2)=7alpha [mm] -\beta. [/mm]
sehen und zeigen kann man as an schnellsten wenn man [mm] z=r*e^{i\alpha} [/mm] schreibt.
Gruss leduart

Bezug
                        
Bezug
Winkel komplexe Zahlen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Fr 13.11.2009
Autor: together

Vielen Dank für Deine Hinweise!

Bezug
        
Bezug
Winkel komplexe Zahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 10.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de